Preview

Application of multiplex pathogen detection technology: achievements and prospects

https://doi.org/10.22328/2413-5747-2025-11-4-28-38

Abstract

INTRODUCTION. Infectious disease pathogens exhibit species diversity and genomic complexity, making their rapid and accurate combined detection a major challenge today. Microfluidic technologies, with their advantages such as miniaturization, functional integration, high throughput, and reproducibility, demonstrate enormous potential in this field. OBJECTIVE. To systematically summarize the latest advances in multifunctional microfluidic diagnostic devices, explore the feasibility of their use in the presence of multiple pathogens, as well as technical limitations and promising areas for their   clinical application. MATERIALS AND METHODS. This article reviews multifunctional detection devices based on common technological approaches such as electrochemical sensors, optical sensors, immunosensors, and paper-based microfluidic platforms, with a particular focus on innovative methods for using microfluidic nucleic acid amplification technology to improve detection sensitivity. RESULTS. Various types of microfluidic devices have significantly improved the efficiency and integration of pathogen detection. Thanks to innovative solutions, microfluidic nucleic acid amplification technology has demonstrated significant potential for optimizing sensitivity. However, cross-reactivity between analytes remains a key factor affecting the effectiveness of combined testing. DISCUSSION. Despite significant technological advances, collaborative pathogen detection still faces challenges related to the diversity, complexity, and reliability of practical applications. Future developments should focus on improving the platform’s versatility, stability, and cost-effectiveness. CONCLUSION. Multiplexed microfluidic detection technology has already achieved significant success in infectious disease diagnostics and holds broad clinical application potential. Further technological development is key to implementing these technologies into clinical practice.

About the Authors

Yiwei Shi
Naval Medical University; Shanghai Key Laboratory of Medical Defense
China

Shi Yiwei – PhD, Lecturer



Letian Fang
Naval Medical University; Shanghai Key Laboratory of Medical Defense
China

Fang Letian – MSc



Guangwen Cao
Naval Medical University; Shanghai Key Laboratory of Medical Defense
China

Cao Guangwen – PhD, Professor, Doctoral Supervisor



References

1. Batt C. A. Materials science. Food pathogen detection [J]. Science, 2007, 316 (5831), 1579-80.

2. Whitesides G. M. The origins and the future of microfluidics [J]. Nature, 2006, 442 (7101), 368-73.

3. Shi Y., Cai Y., Cao Y., et al. Recent advances in microfluidic technology and applications for anti-cancer drug screening [J]. TrAC Trends in Analytical Chemistry, 2021, 134, 116118.

4. Park J., Han D. H., Park J. K. Towards practical sample preparation in point-of-care testing, user-friendly microfluidic devices [J]. Lab Chip, 2020, 20 (7), 1191-203.

5. Ayub K., Mohammad H., Nasrin S., et al. Electrochemical biosensing using N-GQDs, Recent advances in analytical approach [J]. TrAC Trends in Analytical Chemistry, 2018, 105, S0165993618301663.

6. Labib M., Sargent E. H., Kelley S. O. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules [J]. Chem Rev, 2016, 116 (16), 9001-90.

7. Rong Q., Feng F., Ma Z. Metal ions doped chitosan–poly(acrylic acid) nanospheres, Synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer [J]. Biosens Bioelectron, 2016, 75, 148-54.

8. Wu C., Selberg J., Nguyen B., et al. A Microfluidic Ion Sensor Array [J]. Small (Weinheim an Der Bergstrasse, Germany), 2020, 16(6), e1906436.

9. Li C., Fu Z., Li Z., et al. Cross-talk-free multiplexed immunoassay using a disposable electrochemiluminescent immunosensor array coupled with a non-array detector [J]. Biosens Bioelectron, 2011, 27 (1), 141-7.

10. Hsieh K., Ferguson B. S., Eisenstein M., et al. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care [J]. Acc Chem Res, 2015, 48 (4), 911-20.

11. Zhang J., Yang Z., Liu Q., et al. Electrochemical biotoxicity detection on a microfluidic paper-based analytical device via cellular respiratory inhibition [J]. Talanta, 2019, 202, 384-91.

12. Nwankire C. E., Venkatanarayanan A., Glennon T., et al. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform [J]. Biosens Bioelectron, 2015, 68, 382-9.

13. Salahandish R., Hassani M., Zare A., et al. Autonomous electrochemical biosensing of glial fibrillary acidic protein for point-of-care detection of central nervous system injuries [J]. Lab Chip, 2022, 22 (8), 1542-55.

14. Cooper M. A. Optical biosensors, where next and how soon? [J]. Drug Discov Today, 2006, 11 (23-24), 1061-7.

15. Liao Z., Zhang Y., Li Y., et al. Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes, A review [J]. Biosens Bioelectron, 2019, 126, 697-706.

16. Shu B., Lin L., Wu B., et al. A pocket-sized device automates multiplexed point-of-care RNA testing for rapid screening of infectious pathogens [J]. Biosens Bioelectron, 2021, 181, 113145.

17. Lu Y., Yu S., Lin F., et al. Simultaneous label-free screening of G-quadruplex active ligands from natural medicine via a microfluidic chip electrophoresis-based energy transfer multi-biosensor strategy [J]. Analyst, 2017, 142 (22), 4257-64.

18. Stanisavljevic M., Krizkova S., Vaculovicova M., et al. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application [J]. Biosens Bioelectron, 2015, 74, 562-74.

19. Zhang M., Liu J., Shen Z., et al. A newly developed paper embedded microchip based on LAMP for rapid multiple detections of foodborne pathogens [J]. BMC Microbiol, 2021, 21 (1), 197.

20. Wastling S. L., Picozzi K., Kakembo A. S., et al. LAMP for human African trypanosomiasis, a comparative study of detection formats [J]. PLoS Negl Trop Dis, 2010, 4 (11), e865.

21. Banerjee I., Aralaguppe S. G., Lapins N., et al. Microfluidic centrifugation assisted precipitation based DNA quantification [J]. Lab Chip, 2019, 19 (9), 1657-64.

22. Sharma S., Thomas E., Caputi M., et al. RT-LAMP-Based Molecular Diagnostic Set-Up for Rapid Hepatitis C Virus Testing [J]. Biosensors (Basel), 2022, 12 (5).

23. Chen H., Das A., Bi L., et al. Recent advances in surface-enhanced Raman scattering-based microdevices for point-of care diagnosis of viruses and bacteria [J]. Nanoscale, 2020, 12 (42), 21560-70.

24. Yang K., Zong S., Zhang Y., et al. Array-Assisted SERS Microfluidic Chips for Highly Sensitive and Multiplex Gas Sensing [J]. ACS applied materials & interfaces, 2020, 12 (1), 1395-403.

25. Kling A., Dirscherl L., Dittrich P. S. Laser-assisted protein micropatterning in a thermoplastic device for multiplexed prostate cancer biomarker detection [J]. Lab Chip, 2023, 23 (3), 534-41.

26. Gil Rosa B., Akingbade O. E., Guo X., et al. Multiplexed immunosensors for point-of-care diagnostic applications [J]. Biosens Bioelectron, 2022, 203, 114050.

27. Ellington A. A., Kullo I. J., Bailey K. R., et al. Antibody-based protein multiplex platforms, technical and operational challenges [J]. Clin Chem, 2010, 56 (2), 186-93.

28. Moeller M. E., Fock J., Pah P., et al. Evaluation of commercially available immuno-magnetic agglutination in comparison to enzyme-linked immunosorbent assays for rapid point-of-care diagnostics of COVID-19 [J]. J Med Virol, 2021, 93 (5), 3084-91.

29. Ngamsom B., Esfahani M. M., Phurimsak C., et al. Multiplex sorting of foodborne pathogens by on-chip free-flow magnetophoresis [J]. Anal Chim Acta, 2016, 918, 69-76.

30. Lin J. H., Yang Y. C., Shih Y. C, et al. Photoinduced electron transfer between Fe(III) and adenosine triphosphate BODIPY conjugates, Application to alkaline-phosphatase-linked immunoassay [J]. Biosens Bioelectron, 2016, 77, 242-8.

31. Pinto V., Sousa P., Catarino S. O., et al. Microfluidic immunosensor for rapid and highly-sensitive salivary cortisol quantification [J]. Biosens Bioelectron, 2017, 90, 308-13.

32. Nilghaz A., Wicaksono D. H. B., Gustiono D., et al. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique [J]. Lab Chip, 2012, 12 (1), 209-18.

33. Noviana E., Ozer T., Carrell C. S., et al. Microfluidic Paper-Based Analytical Devices, From Design to Applications [J]. Chem Rev, 2021, 121 (19), 11835-85.

34. Clarke O. J. R., Goodall B. L., Hui H. P., et al. Development of a SERS-Based Rapid Vertical Flow Assay for Point-of-Care Diagnostics [J]. Anal Chem, 2017, 89 (3), 1405-10.

35. Soh J. H., Chan H-M., Ying J. Y. Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device [J]. Nano Today, 2020, 30, 100831.

36. Wang X., Li F., Guo Y. Recent Trends in Nanomaterial-Based Biosensors for Point-of-Care Testing [J]. Frontiers in chemistry, 2020, 8, 586702.

37. Wu Y., Zhou Y., Leng Y., et al. Emerging design strategies for constructing multiplex lateral flow test strip sensors [J]. Biosens Bioelectron, 2020, 157, 112168.

38. Han M., Gong L., Wang J., et al. An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk [J]. Sensors and Actuators B, Chemical, 2019, 292, 94-104.

39. Zhang D., Huang L., Liu B., et al. Rapid and Ultrasensitive Quantification of Multiplex Respiratory Tract Infection Pathogen via Lateral Flow Microarray based on SERS Nanotags [J]. Theranostics, 2019, 9 (17), 4849-59.

40. Di Nardo F., Alladio E., Baggiani C., et al. Colour-encoded lateral flow immunoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single Test line [J]. Talanta, 2019, 192, 288-94.

41. Yang M., Zhang W., Zheng W., et al. Inkjet-printed barcodes for a rapid and multiplexed paper-based assay compatible with mobile devices [J]. Lab Chip, 2017, 17 (22), 3874-82.

42. Mullis K., Faloona F., Scharf S., et al. Specific enzymatic amplification of DNA in vitro, the polymerase chain reaction [J]. Cold Spring Harb Symp Quant Biol, 1986, 51, 263-73.

43. Madic J., Jovelet C., Lopez J., et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR [J]. Oncotarget, 2018, 9 (100), 37393-406.

44. Miotke L., Lau B. T., Rumma R. T., et al. High Sensitivity Detection and Quantitation of DNA Copy Number and Single Nucleotide Variants with Single Color Droplet Digital PCR [J]. Anal Chem, 2014, 86 (5), 2618-24.

45. Tanaka J., Nakagawa T., Shiratori A., et al. KRAS genotyping by digital PCR combined with melting curve analysis [J]. Sci Rep, 2019, 9 (1), 2626.

46. Gaňová M., Zhang H., Zhu H., et al. Multiplexed digital polymerase chain reaction as a powerful diagnostic tool [J]. Biosens Bioelectron, 2021, 181, 113155.

47. Chen X., Liang Z., Li D., et al. Microfluidic dielectrophoresis device for trapping, counting and detecting Shewanella oneidensis at the cell level [J]. Biosens Bioelectron, 2018, 99, 416-23.

48. Su Y., Tian Q., Pan D., et al. Antibody-Functional Microsphere-Integrated Filter Chip with Inertial Microflow for Size Immune-Capturing and Digital Detection of Circulating Tumor Cells [J]. ACS applied materials & interfaces, 2019, 11 (33), 29569-78.

49. Kastania A. S., Petrou P. S., Loukas C. M., et al. Poly-L-histidine coated microfluidic devices for bacterial DNA purification without chaotropic solutions [J]. Biomed Microdevices, 2020, 22 (3), 44.

50. Ramachandran A., Huyke D. A., Sharma E., et al. Electric field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2 [J]. Proc Natl Acad Sci U S A, 2020, 117 (47), 29518-25.

51. Hu F., Li J., Zhang Z., et al. Smartphone-Based Droplet Digital LAMP Device with Rapid Nucleic Acid Isolation for Highly Sensitive Point-of-Care Detection [J]. Anal Chem, 2020, 92 (2), 2258-65.

52. Coudron L., Mcdonnell M. B., Munro I., et al. Fully integrated digital microfluidics platform for automated immunoassay, A versatile tool for rapid, specific detection of a wide range of pathogens [J]. Biosens Bioelectron, 2019, 128, 52-60.

53. Bouchiat C., Ginevra C., Benito Y., et al. Improving the Diagnosis of Bacterial Infections, Evaluation of 16S rRNA Nanopore Metagenomics in Culture-Negative Samples [J]. Frontiers in microbiology, 2022, 13, 943441.

54. Renvoisé A., Brossier F., Sougakoff W., et al. Broad-range PCR, past, present, or future of bacteriology? [J]. Med Mal Infect, 2013, 43 (8), 322-30.

55. Zhang H., Xu T., Li C. W., et al. A microfluidic device with microbead array for sensitive virus detection and genotyping using quantum dots as fluorescence labels [J]. Biosens Bioelectron, 2010, 25 (11), 2402-7.

56. Rezaei M., Radfar P., Winter M., et al. Simple-to-Operate Approach for Single Cell Analysis Using a Hydrophobic Surface and Nanosized Droplets [J]. Anal Chem, 2021, 93 (10), 4584-92.

57. Rolando J. C., Jue E., Barlow J. T., et al. Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification [J]. Nucleic Acids Res, 2020, 48 (7), e42


Review

For citations:


Shi Y., Fang L., Cao G. Application of multiplex pathogen detection technology: achievements and prospects. Marine Medicine. 2025;11(4):28-38. https://doi.org/10.22328/2413-5747-2025-11-4-28-38

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-5747 (Print)
ISSN 2587-7828 (Online)