Impact of spermatogenesis parameters on effectiveness of assisted reproductive technology programs: single-center retrospective study
https://doi.org/10.22328/2413-5747-2024-10-4-26-32
Abstract
INTRODUCTION. Spermogram parameters such as sperm concentration, motility and morphology are used to evaluate the intensity of spermatogenesis, as well as some stages of the embryological stage of assisted reproductive technology (ART) programs: fertilization and embryo fragmentation. However, the prognostic value of the standard spermiologic study for ART outcomes remains controversial.
OBJECTIVE. To evaluate the effect of sperm concentration, motility and morphology on the onset of clinical pregnancy, incidence of unintended pregnancy and live birth in patients who have undergone ART procedures.
MATERIALS AND METHODS. A single-center retrospective study involved 557 couples treated by in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). Depending on the results of spermograms, 4 groups were formed: patients with normozoospermia (n = 139), asthenozoospermia (n = 126), teratozoospermia (n = 149) and oligo-, oligoasthenoteratozoospermia (n = 143). Descriptive statistics, chi-square test and logistic regression were used to assess outcomes.
RESULTS. Clinical pregnancy rate in in the group with normozoospermia was 37,4 %, which is significantly higher than in the group with asthenozoospermia (23,0 %), teratozoospermia (24,2 %) and comorbidity (21,7 %) (p = 0,010). Live birth rate was highest in the group with normozoospermia – 32,4 %, compared to 15,9 % with asthenozoospermia and 16,8 % with comorbidity (p = 0,003). Logistic regression analysis has showed that increasing sperm motility raises probability of live birth 1,010 times (p = 0,033). However, the model has explained only 1,3% of variance in outcomes, indicating its low predictive power.
DISCUSSION. The study results show that pathozoospermia is associated with reduced likelihood of pregnancy and live birth in ART programs, which is consistent with other studies. However, the association of spermogram parameters with the effectiveness of ART is not confirmed in all studies, indicating that additional factors, such as sperm DNA fragmentation, need to be taken into account. In addition, differences in outcomes may be related to equipment and approaches to ART procedures.
CONCLUSION. Simple spermogram parameters, such as sperm concentration, motility and morphology, can predict the outcome of ART, including the rate of clinical pregnancy and live birth, However, their prognostic value remains limited, requiring further research to develop more accurate prediction models.
About the Authors
Jekaterina PrikulisRussian Federation
postgraduate student, Department of Obstetrics, Gynecology and Reproductology
Lyudmila G. Stepanyan
Russian Federation
clinical resident
Yanina M. Sagurova
Russian Federation
Embryologist, Department of Assisted Reproductive Technologies
Evgeniya M. Komarova
Russian Federation
Cand. of Sci. (Biol.), Head of Early Embryogenesis Laboratory of Reproductology Department
Elena A. Lesik
Russian Federation
Cand. of Sci. (Biol.), Senior Embryologist, Department of Assisted Reproductive Technologies
Lyailya Kh. Dzhemlikhanova
Russian Federation
Cand. of Sci. (Med.), associate professor; Department of Obstetrics, Gynecology and Reproductology, Obstetrician-gynecologist at the Department of Assisted Reproductive Technologies
Dariko A. Niauri
Russian Federation
Dr. of Sci. (Med.), Professor, Head of the Department of Obstetrics, Gynecology and Reproductology
Sergey Yu. Borovets
Russian Federation
Dr. of Sci. (Med.), Professor, Doctor of Urology, Department of Assisted Reproductive Technologies
Aleksandr M. Gzgzyan
Russian Federation
Dr. of Sci. (Med.), Professor, Professor of the Department of Obstetrics, Gynecology and Reproductology, Head of the Department of Assisted Reproductive Technologies
Igor Yu. Kogan
Russian Federation
Corresponding Member of the Russian Academy of Sciences, Dr. of Sci. (Med.), Professor, Professor of the Department of Obstetrics, Gynecology and Reproductology, Director
References
1. Лебедев Г. С. и др. Мужское бесплодие в Российской Федерации: статистические данные за 2000-2018 годы // Экспериментальная и клиническая урология. 2019. № 4. С. 4–13 [Lebedev G. S., et al. Male infertility in the Russian Federation: statistical data for 2000–2018. Experimental and Clinical Urology, 2019, No. 4, pp. 4–13 (In Russ.)]. doi: 10.29188/2222-8543-2019-11-4-4-12.
2. Рокунов Е. Д., Абаленихина Ю. В., Коваленко М. С., Кошулько П. А. Уровень активности матриксной металлопротеиназы-9 у пациенток с абортивным течением беременности. Инновационные технологии в медицине. Рязань. 2022. С. 50–51. [Rokunov E. D., Abalenikhina Yu. V., Kovalenko M. S., Koshulko P. A. The level of matrix metalloproteinase-9 activity in patients with abortive pregnancy. Innovative technologies in medicine. Ryazan, 2022, pp. 50–51 (In Russ.)].
3. Zaninovic N., Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertility and Sterility, 2020, Vol. 114, No. 5, pp. 914–920. doi: 10.1016/j.fertnstert.2020.09.157.
4. De Almeida Ferreira Braga D. P., Setti A. S., Figueira R. C. S., et al. Sperm organelle morphologic abnormalities: contributing factors and effects on intracytoplasmic sperm injection cycles outcomes. Urology, 2011, Vol. 78, pp. 786–791. doi: 10.1016/j.urology.2011.06.018.
5. Bartolacci A., Pagliardini L., Makieva S., et al. Abnormal sperm concentration and motility as well as advanced paternal age compromise early embryonic development but not pregnancy outcomes: a retrospective study of 1266 ICSI cycles. Journal of Assisted Reproduction and Genetics, 2018, Vol. 35, pp. 1897–1903. doi: 10.1007/s10815-018-1256-8.
6. Mazzilli R., Cimadomo D., Vaiarelli A., et al. Effect of the male factor on the clinical outcome of intracytoplasmic sperm injection combined with preimplantation aneuploidy testing: observational longitudinal cohort study of 1,219 consecutive cycles. Fertility and Sterility, 2017, Vol. 108, No. 6, pp. 961–972. doi: 10.1016/j.fertnstert.2017.08.033.
7. Mariappen U., Keane K. N., Hinchliffe P. M., et al. Neither male age nor semen parameters influence clinical pregnancy or live birth outcomes from IVF. Reproductive Biology, 2018, Vol. 18, No. 4, pp. 324–329. doi: 10.1016/j.repbio.2018.11.003.
8. Van Den Hoven L., Hendriks J.C.M., et al. Status of sperm morphology assessment: an evaluation of methodology and clinical value. Fertility and Sterility, 2015, Vol. 103, No. 1, pp. 53–58. doi : 10.1016/j.fertnstert.2014.09.036.
9. Dang V. Q., Vuong L. N., Ho T. M., et al. The effectiveness of ICSI versus conventional IVF in couples with non-male factor infertility: study protocol for a randomised controlled trial. Human Reproduction Open, 2019, No. 2, pp. 1-6. doi: 10.1093/hropen/hoz006.
10. Dcunha R., Hussein R.S., Ananda H., et al. Current insights and latest updates in sperm motility and associated applications in assisted reproduction. Reproductive Sciences, 2022, Vol. 29, No. 1, pp. 7–25. doi: 10.1007/s43032-020-00408-y.
11. Hotaling J. M., Smith J. F., Rosen M., et al. The relationship between isolated teratozoospermia and clinical pregnancy after in vitro fertilization with or without intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertility and Sterility, 2011, Vol. 95, No. 3, pp. 1141–1145. doi: 10.1016/j.fertnstert.2010.09.029.
12. Villani M. T., Morini D., Spaggiari G., et al. Are sperm parameters able to predict the success of assisted reproductive technology? A retrospective analysis of over 22,000 assisted reproductive technology cycles. Andrology, 2022, Vol. 10, No. 2, pp. 310–321. doi: 10.1111/andr.13123.
13. Moubasher A. El Din-A. A., Taha E. A., et al. Semen parameters on the intracytoplasmic sperm injection day: predictive values and cutoff thresholds of success. Clinical and Experimental Reproductive Medicine, 2021, Vol. 48, No. 1, pp. 61–68. doi: 10.5653/cerm.2020.03965.
14. Гамидов С. И., Овчинников Р. И., Попова А. Ю. и др. Эффективность программ вспомогательных репродуктивных технологий в зависимости от характера изменений спермограммы // Андрология и генитальная хирургия. 2018. T. 19, № 2. С. 82-87 [Gamidov S. I., Ovchinnikov R. I., Popova A. Yu., et al. Effectiveness of assisted reproductive treatment programs depending on the characteristics of spermogram changes. Andrology and Genital Surgery, 2018, Vol. 19, No. 2, pp. 82–87 (In Russ.)]. doi: 10.17650/2070-9781-2018-19-2-82-87.
15. Pereira N., Neri Q. V., Lekovich J. P., et al. Outcomes of intracytoplasmic sperm injection cycles for complete teratozoospermia: a case-control study using paired sibling oocytes. BioMed Research International, 2015, Vol. 2015, pp. 1–6. doi : 10.1155/2015/470819.
16. Dar S., Grover S. A., Moskovtsev S. I., et al. In vitro fertilization–intracytoplasmic sperm injection outcome in patients with a markedly high DNA fragmentation index (>50%). Fertility and Sterility, 2013, Vol. 100, No. 1, pp. 75–80. doi: 10.1016/j.fertnstert.2013.03.011.
17. Oleszczuk K., Giwercman A., Bungum M. Sperm chromatin structure assay in prediction of in vitro fertilization outcome. Andrology, 2016, Vol. 4, No. 2, pp. 290–296. doi: 10.1111/andr.12153.
18. Sun T-C., Zhang Y., Li H-T., et al. Sperm DNA fragmentation index, as measured by sperm chromatin dispersion, might not predict assisted reproductive outcome. Taiwanese Journal of Obstetrics and Gynecology, 2018, Vol. 57, No. 4, pp. 493–498. doi: 10.1016/j.tjog.2018.06.003.
19. Bungum M., Bungum L., Lynch K-F., et al. Spermatozoa DNA damage measured by sperm chromatin structure assay (SCSA) and birth characteristics in children conceived by IVF and ICSI. International Journal of Andrology, 2012, Vol. 35, No. 4, pp. 485–490. doi: :10.1111/j.1365-2605.2011.01222.x.
Review
For citations:
Prikulis J., Stepanyan L.G., Sagurova Ya.M., Komarova E.M., Lesik E.A., Dzhemlikhanova L.Kh., Niauri D.A., Borovets S.Yu., Gzgzyan A.M., Kogan I.Yu. Impact of spermatogenesis parameters on effectiveness of assisted reproductive technology programs: single-center retrospective study. Marine Medicine. 2024;10(4):26-32. (In Russ.) https://doi.org/10.22328/2413-5747-2024-10-4-26-32