State of cell morphofunctional systems under action of seafaring labour factors: experimental study
https://doi.org/10.22328/2413-5747-2024-10-4-54-62
Abstract
OBJECTIVE. Carry out morphological analysis of the tissues in the parenchymal organs after single x-ray exposure and in different intensity of decompressive venous gas embolism at the light-optical level.
MATERIALS AND METHODS. The study was carried out on experimental models: mice (acute radiation sickness, simulated by single x-ray exposure with the lethal absorbed dose of 7,8 Gy) and guinea pigs (acute decompression sickness (DS) and recurrent decompressive venous gas embolism of different intensity). Organ fragments of the experimental animals were recorded at different periods after removing from the experiment and processed using transmission electron microscopy to make and analyze semifine sections. There was comparative morphological analysis of semifine section of the liver, renal cortex and respiratory lung field.
RESULTS. There have been revealed reactive changes in various cell differons of the main parenchymal organs: lungs, liver and kidney, most sensitive to such adverse effects as radiation exposure and different levels of decompressive venous gas embolism, specific to professional activity of the crew of surface vessels and submarines. Reactive tissue changes at the cellular level are the initial link in the formation of pathological processes. The analysis if semifine organ sections of mice and guinea pigs has revealed non-specific reactive changes: vacuolization of parenchyma cell cytoplasm, erythrocyte stasis in microvasculature vessels and the formation of specific lesions – gas bubbles in acute DS. Reactive changes, observed in severe exposure, are also detected in cells and at lower loads of the studied factors. Their nature remains, but intensity of morphological manifestations reduces.
DISCUSSION. Studies of morphological changes in structural and functional units of the organ in acute conditions and accumulation of “residual changes” in cells, causing a chronic disease, are necessary for the evidence-based correction of seafarers’ working environment in sub-extreme and extreme conditions of service.
CONCLUSION. Morphological studies with the use of light-optical microscopy reveal initial reactive changes in tissues and cells of experimental animals, subjected to adverse factors, characteristic to professional activity of marine specialists. This contributes to identify factors of seafaring labour, having the most adverse effect on the body, and allows to improve the prevention system, creating conditions for increasing professional longevity of fleet specialists.
About the Authors
Alexey A. MyasnikovRussian Federation
Dr. of Sci. (Med.), Professor, Honored Worker of the Higher School of the Russian Federation, Professor of the Department Physiology of Scuba Diving
Olga E. Mirgorodskaya
Russian Federation
Zagir M. Israfilov
Russian Federation
Lecturer of the Department Physiology of Scuba Diving
Sergey P. Kolchanov
Russian Federation
Adjunct of the Department Physiology of Scuba Diving
References
1. Ломов О. П., Ахметзянов И. М., Соколов М. О. Физические факторы обитаемости кораблей и судов. СПб: Судостроение. 2014. 560 с. [Lomov O. P., Akhmetzyanov I. M., Sokolov M. O. Physical factors of habitability of ships and vessels. St. Petersburg: Sudostroenie, 2014, 560 p. (In Russ.)].
2. Чумаков А. В., Черкашин Д. В. Влияние военно-профессиональных факторов на здоровье специалистов Военно-Морского Флота с учетом современного состояния и перспектив развития военно-морской терапии // Известия Российской военно-медицинской академии. 2017. Т. 36, № 3. С. 15–23 [Chumakov A. V., Cherkashin D. V. The influence of military-professional factors on the health of navy specialists, taking into account the current state and prospects for the development of naval therapy. Proceedings of the Russian Military Medical Academy, 2017, Vol. 36, No. 3, рp. 15–23 (In Russ.)].
3. Одинцова Н.А. Культуры клеток морских гидробионтов // Гены и Клетки. 2019. Т. 14, № 3. С. 110-111. [Odintsova N.A. Cell cultures of marine hydrobionts. Genes and Cells. 2019, Vol. 14, No. 3, рр. 110-111. (In Russ.)].
4. Гончарова Р. И., Смолич И. И. Генетическая эффективность малых доз ионизирующей радиации при хроническом облучении мелких млекопитающих // Радиационная биология. Радиоэкология. 2002. Т. 2, No 6. С. 654–660 [Goncharova R. I., Smolich I. I. Genetic efficiency of small doses of ionizing radiation in chronic irradiation of small mammals. Radiation biology. Radioecology, 2002, Vol. 42, No. 6, pp. 654–660 (In Russ.)].
5. Гончаренко Е. Н., Антонова С. В., Ахалая М. Я., Кудряшов Ю. Б. Влияние малых доз ионизирующей радиации на уровень содержания катехоламинов и кортикостероидов в надпочечниках мышей // Радиационная биология. Радиоэкология. 2000. Т. 40, № 2. С. 160-161 [Goncharenko E. N., Antonova S. V., Akhalaya M. Ya., Kudryashov Yu. B. Effect of low doses of ionizing radiation on the level of catecholamines and corticosteroids in the adrenal glands of mice. Radiation biology. Radioecology, 2000, Vol. 40, No. 2, pp. 160-161 (In Russ.)].
6. Алехин А. Н., Иванов А. О., Петров В. А. Психофизиологические аспекты адаптации человека при длительном непрерывном пребывания в условиях пожаробезопасной искусственной газовой среды // Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2015. № 3. С. 104–110 [Alekhin A. N., Ivanov A. O., Petrov V. A. Psychophysiological aspects of human adaptation during prolonged continuous stay in a fire-safe artificial gas environment. Biomedical and socio-psychological problems of safety in emergency situations, 2015, No. 3, pp.104–110 (InRuss.)].
7. Жильцова И. И., Ярков А. М., Мясников А. А. О поддержании работоспособности моряков в походе надводного корабля в условиях Заполярья // Военно-медицинский журнал. 2012. Т. 333, № 9. С. 62–67 [Zhiltsova I. I., Yarkov A. M., Myasnikov A. A. On maintaining the working capacity of sailors on a surface ship cruise in the Arctic // Military Medical Journal, 2012, Vol. 333, No. 9, pp. 62–67 (In Russ.)].
8. Зверев Д. П., Бобров Ю. М., Шитов А. Ю., Андрусенко А. Н. Роль профессора И. А. Сапова в развитии кафедры физиологии подводного плавания и аварийно-спасательного дела Военно-медицинской академии имени С. М. Кирова // Вестник Российской военно-медицинской академии. 2021. Т. 23, № 4. С. 313–322 [Zverev D. P., Bobrov Yu. M., Shitov A. Yu., Andrusenko A. N. The role of professor I. A. Sapov in the development of the department of physiology of scuba diving and emergency rescue of the Military medical academy named after S. M. Kirov. Bulletin of the Russian Military Medical Academy, 2021, Vol. 23, No. 4, pp. 313–322 (In Russ.)].
9. Василец В. М. и др. Водолазная профпатология. История и актуальность // Клиническая больница. 2015. № 2 (12). С. 34–38 [Vasilets V. M., et al. Diving occupational pathology. History and relevance. Clinical Hospital, 2015, № 2 (12), pp. 34–38 (In Russ.)].
10. Павлова О.М., Ляшко О.Г., Леонтьева И.В., Быков В.Л. Опыт преподавания дисциплины "Гистология, эмбриология, цитология - гистология полости рта" // Морфология. 2015. Т. 148, № 4. С. 78-81. [Pavlova O.M., Lyashko O.G., Leontyeva I.V., Bykov V.L. Experience of teaching the discipline "Histology, embryology, cytology - histology of the oral cavity". Morphology. 2015, Vol. 148, No. 4, рр. 78-81. (In Russ.)].
11. Кулешов В. И. Новожилова А. П., Мясников А. А., Сонин Л. Н., Мясникова О. Е. Ультраструктура клеток почек при декомпрессионной болезни у морских свинок // Гипербарическая физиология и медицина. 1996. № 4. С. 33-34 [Kuleshov V. I. Novozhilova A. P., Myasnikov A. A., Sonin L. N., Myasnikova O. E. Ultrastructure of kidney cells in decompression sickness in guinea pigs. Hyperbaric physiology and medicine, 1996, No. 4, pp. 33-34 (In Russ.)].
12. Мясников А. А., Сонин Л. Н. Миргородская О. Е. Ультраструктурные изменения в легких у животных при различной интенсивности постдекомпрессионной венозной газовой эмболии и острой декомпрессионной болезни // Морской медицинский журнал. 1999. № 4. С. 14–16 [Myasnikov A. A., Sonin L. N. Mirgorodskaya O. E. Ultrastructural changes in the lungs of animals with varying intensity of postdecompression venous gas embolism and acute decompression sickness. Marine Medical Journal, 1999, No. 4, pp. 14–16. (In Russ.)].
13. Новожилова А. П., Кулешов В. И., Мясников А. А., Миргородская О. Е., Сонин Л.Н. Структурные изменения в паренхиматозных органах у животных при различной интенсивности венозной газовой эмболии и острой декомпрессионной болезни // Морфология. 1999. Т. 115. № 2. С. 41–46 [Novozhilova A. P., Kuleshov V. I., Myasnikov A. A., Mirgorodskaya O. E., Sonin L.N. Structural changes in parenchymal organs in animals with varying intensity of venous gas embolism and acute decompression sickness. Morphology, 1999, Vol. 115, No. 2, pp. 41–46 (In Russ.)].
14. Демяшкин Г. А., Корякин С. Н., Степанова Ю. Ю., Щекин В. И., Шегай П. В. Влияние прицельного облучения электронами на гистоархитектонику почек крыс породы Wistar в дозе 8 Гр // Ветеринарный врач. 2021. № 4. С. 13–18 [Demyashkin G. A., Koryakin S. N., Stepanova Yu. Yu., Shchekin V. I., Shegai P. V. The effect of targeted electron irradiation on the histoarchitectonics of the kidneys of Wistar rats at a dose of 8 G. Veterinarian, 2021, No. 4, pp. 13–18 (In Russ.)].
15. Мясников А. А. и др. Хроническая декомпрессионная болезнь и ее диагностика // Вестник Российской военно-медицинской академии. 2018. № 4 (64). С. 26–31 [Myasnikov A. A., et al. Chronic decompression sickness and its diagnosis. Bulletin of the Russian Military Medical Academy, 2018, No 4 (64), pp. 26–31 (In Russ.)].
Supplementary files
![]() |
1. Cover letter | |
Subject | ||
Type | author.submit.suppFile.coverLetter | |
Download
(54KB)
|
Indexing metadata ▾ |
![]() |
2. conclusion on the possibility of open publication | |
Subject | ||
Type | common.other | |
Download
(213KB)
|
Indexing metadata ▾ |
|
3. Fig. 1. Guinea pig liver in acute decompression sickness. Intense vacuolization of the cytoplasm of hepatocytes located along the periphery of the lobule is expressed. “Vacuoles” of a larger diameter, localized near the core, presumably “gas bubbles”. A semi-thin slice. The color is toluidine blue. The scale: 20 µm. | |
Subject | ||
Type | author.submit.suppFile.figureResearchResults | |
View
(935KB)
|
Indexing metadata ▾ |
|
4. Fig. 2. Guinea pig kidney in acute decompression sickness. Fine-dispersed vacuolization and larger vacuolization in the structures of nephrons. Capillary stasis of the microcirculatory bed of the renal corpuscle. A semi-thin slice. The color is toluidine blue. The scale: 20 µm. | |
Subject | ||
Type | author.submit.suppFile.figureResearchResults | |
View
(975KB)
|
Indexing metadata ▾ |
|
5. Fig. 3. The respiratory department of the guinea pig lung in acute decompression sickness. A semi-thin slice. The color is toluidine blue. The scale: 50 µm. | |
Subject | ||
Type | author.submit.suppFile.figureResearchResults | |
View
(875KB)
|
Indexing metadata ▾ |
|
6. Fig. 4. Mouse liver at a lethal radiation dose of 7.8 Gy on the 9th day. A semi-thin slice. The color is methylene blue. The scale: 20 µm. | |
Subject | ||
Type | author.submit.suppFile.figureResearchResults | |
View
(3MB)
|
Indexing metadata ▾ |
|
7. Fig. 5. Mouse kidney at a lethal radiation dose of 7.8 Gy on the 9th day. A semi-thin slice. The color is methylene blue. The scale: 20 µm. | |
Subject | ||
Type | author.submit.suppFile.figureResearchResults | |
View
(3MB)
|
Indexing metadata ▾ |
|
8. Fig. 6. The respiratory department of the mouse lung at a lethal radiation dose of 7.8 Gy on the 30th day. A semi-thin slice. The color is toluidine blue. The scale: 20 µm. | |
Subject | ||
Type | author.submit.suppFile.figureResearchResults | |
View
(205KB)
|
Indexing metadata ▾ |
Review
For citations:
Myasnikov A.A., Mirgorodskaya O.E., Israfilov Z.M., Kolchanov S.P. State of cell morphofunctional systems under action of seafaring labour factors: experimental study. Marine Medicine. 2024;10(4):54-62. https://doi.org/10.22328/2413-5747-2024-10-4-54-62