Preview

Water-electrolyte metabolism and renal function under action of hyperbaric factors

https://doi.org/10.22328/2413-5747-2024-10-2-7-20

Abstract

INTRODUCTION. Numerous studies in the field of hyperbaric physiology and diving medicine note changes in the water-electrolyte metabolism as well as renal function of men and animals in conditions of high pressure of gas and water environments. Despite undeniable water part in the process of body saturation-desaturation from indifferent gas as well as in processes of maintaining osmotic homeostasis, the role of water-electrolyte metabolism and renal functions in adaptation processes to hyperbaric conditions remains under-researched.


OBJECTIVE. To determine mechanisms and patterns of changes in the water-electrolyte metabolism and renal functions under the action of hyperbaric factors.


MATERIALS AND METHODS. Review work of scientometric databases was conducted: eLibrary.ru, RSCI, Scopus, PubMed, Cochrane, Google Scholar, www.academickeys.com, Ulrichsweb, www.research4life.org, www.lens.org, www.cabi.org, rucont.ru, www.ebsco.com, www.mendeley.com, OpenCitations.net, unpaywall.org, xueshu.baidu.com, www.wikidata.org, na.neicon.ru, keepers.issn.org. the search was done by keywords and phrases in Russian and English: a diver, water-electrolyte metabolism, excretory system, renal functions, diuresis, kidney, nitrogen toxic effect, hyperoxia, hypoxia, decompression sickness, oxygen toxic effect. 155 literary sources of 1975–2023 were analyzed, 53 works of which were included in the review, met the criteria for inclusion and exclusion. In this case, at least 80 % of works, included in the review, have been published for the past 10 years.


RESULTS. Most analyzed works contain information on an increase in diuresis in most subjects in the course of diving. Apart from it, there is an increase in the excretion of sodium and potassium in the urine, correlated with the amount of urine produced. Hypernatremia and an increase in tissue hydration are often revealed in the hyperbaric conditions, cause by oxygen toxic effect, supersaturation of body tissues with indifferent gases and nitrogen toxic effect. Renin-angiotensin-aldosterone system (RAAS) and its main component aldosterone play a key role in changes of the water-electrolyte metabolism in the hyperbaric conditions. The role of antidiuretic hormone is interesting because a lot of “non-classical” effects are uncovered in it that could be manifested in hyperbaric conditions and have never been associated with the action of high pressure on the regulation of the water-electrolyte metabolism.


DISCUSSION. Staying in conditions of increased pressure of the gas and water environment is subject to numerous and sometimes divergent changes in the water-electrolyte metabolism and renal functions. The loss of water and electrolytes by the body, recorded by bioimpendance methods in the course of hyperbaric factors, might result in dehydration. This, in turn, can increase the risk of developing specific divers’ disease, primarily such as decompression sickness. The studied literature does not provide clear guidelines on water-electrolyte balance correction in divers. Some works present data showing the possibility and usefulness of liquid intake (drinks) or pharmacological drugs, affecting divers’ water-electrolyte metabolism.


CONCLUSION. Analysis of literature data shows that specific changes of water-electrolyte metabolism and functions of excretory system emerge in the conditions of hyperbaric factors. In most subjects, these changes involve increased diuresis, hypernatremia and reduced tissue hydration. In cases where the effect of the adverse hyperbaric factor led to the development of pathological changes, tissue hyperhydration and increasing concentration of potassium in the blood as well as reduction of sodium in the urine were observed. This could indicate the possibility of forming the specific phenomenon “pressure diuresis” in hyperbaric conditions. All changes, occurring in the body under the action of hyperbaric factors, should be considered in terms of individual resistance to these factors and primarily to decompression sickness. Studies of divers’ water-electrolyte metabolism and renal function in the conditions of adverse hyperbaric factors are relevant with a view to developing the system of correction measures and prevention of the revealed violations.

About the Authors

Arseniy Yu. Shitov
Military Medical Academy
Russian Federation

Cand. of Sci. (Med.), Honored Inventor of the Russian Federation, Senior lecturer of the Department Physiology of Scuba Diving



Dmitry P. Zverev
Military Medical Academy
Russian Federation

Cand. of Sci. (Med.), Associate Professor, Colonel of the Medical Service, Head of the Department Physiology of Scuba Diving



Alexey A. Myasnikov
Military Medical Academy
Russian Federation

Dr. of Sci. (Med.), Professor, Honored Worker of the Higher School of the Russian Federation, Professor of the Department Physiology of Scuba Diving



Ilyas R. Klenkov
Military Medical Academy
Russian Federation

Cand. of Sci. (Med.), Senior lecturer of the Department Physiology of Scuba Diving



Andrey N. Andrusenko
Military Medical Academy; Scientific research institute of industrial and marine medicine Federal medical and biological agency
Russian Federation

Cand. of Sci. (Med.), Lecturer of the Department Physiology of Scuba Diving, Research associate



Zagir M. Israfilov
Military Medical Academy
Russian Federation

Lecturer of the Department Physiology of Scuba Diving



Sergey P. Kolchanov
Military Medical Academy
Russian Federation

Adjunct of the Department Physiology of Scuba Diving



References

1. Wekre S. L., Landsverk H. D., Lautridou J., Hjelde A., Imbert J. P., Balestra C., Eftedal I. Hydration status during commercial saturation diving measured by bioimpedance and urine specific gravity // Front Physiol. 2022. No 13. pp. 971757. doi: 10.3389/fphys.2022.971757.

2. Kaczerska D., Siermontowski P., Kozakiewicz M., Krefft K., Olszański R. Dehydration of a diver during a hyperbaric chamber exposure with oxygen decompression // Undersea Hyperb Med. 2019. Vol. 46, No 2. pp. 185–188.

3. Sengun S., Uslu A., Aydin S. Application of multifrequency bioelectrical impedance analysis method for the detection of dehydration status in professional divers // Medicina (Kaunas). 2012. Vol. 48, No 4. pp. 203–210. doi:10.3390/medicina48040029.

4. Носков В. Б. Коррекция уровня гидратации организма на различных этапах космического полета // Авиакосмическая и экологическая медицина. 2003. Т.37, № 2. с. 19–22 [Noskov V. B. Correction of the human body hydration in different periods of space flight // Aviation and Space and Environmental Medicine. 2003. Vol. 37, No. 2. pp. 19–22 (In Russ.)].

5. Благинин А. А., Жильцова И. И., Емельянов Ю. А. Вопросы декомпрессионной безопасности лётного состава // Военно-медицинский журнал. 2017. Т. 338, № 7. c. 42–45. [Blaginin A. A., Zhiltsova I. I., Emelyanov Yu. A. Issues on decompression safety of flight crew // Military Medical Journal. 2017. Vol. 338, No 7. p. 42–45 (In Russ.)].

6. Sundal E., Lygre S.H.L., Irgens Å., Troland K., Grønning M. Long-term neurological sequelae after decompression sickness in retired professional divers // Journal of the Neurological Sciences. 2022. Vol. 434. p. 120181. doi:10.1016/j.jns.2022.120181.

7. Григорьев А. И., Николаев С. О., Орлов О. И., Семенов В. Ю., Перфильева Т. А. Влияние гипербарии на водно-солевой обмен // Бюллетень Космическая биология и медицина. 1985. № 2-3. с. 3–44 [Grigoriev A. I., Nikolaev S. O., Orlov O. I., Semenov V. Yu., Perfileva T. A. The effect of hyperbaria on water-salt metabolism // Bulletin Space Biology and Medicine. 1985. No 2-3. pp. 3-44 (In Russ.)].

8. Мясников А. А., Старков А. В., Старовойт А. В. Избранные вопросы водолазной медицины. СПб.: РИЦ ПСПбГМУ, 2019. 59 с. [Myasnikov A. A., Starkov A. V., Starovoit A. V. Selected issues of diving medicine. St. Petersburg: RIC PSPbSMU, 2019. 59 p. (In Russ.)].

9. Мясников А. А. Устойчивость организма к декомпрессионной болезни и методы её повышения. СПб.: МАПО, 2009. 47 с. [Myasnikov A. A. The body’s resistance to decompression sickness and methods of its improvement. St. Petersburg: MAPO, 2009. 47 p. (In Russ.)].

10. Мясников А. А. Профессиональная патология специалистов Военно-морского флота // Патофизиология: руководство для слушателей и врачей Военно-медицинской академии и Военно-медицинских институтов / Под. ред. В. Ю. Шанина, СПб.: ЭЛБИ-СПб, 2005. 639 с. [Myasnikov A. A. Professional pathology of Navy specialists // Pathophysiology: a guide for students and doctors of the Military Medical Academy and Military Medical Institutes / Edited by V.Yu. Shanin, St. Petersburg: ELBI-SPb, 2005. 639 p. (In Russ.)].

11. Случай тяжелой декомпрессионной болезни у водолаза из-за нарушения режима декомпрессии и водного баланса // Военно-медицинский журнал. 2017. Т. 338, № 6. с. 71 [A case of severe decompression sickness in a diver due to a violation of the decompression regime and water balance // Military Medical Journal. 2017. Vol. 338, No 6. p. 71 (In Russ.)].

12. Зверев Д. П., Мясников А. А., Шитов А. Ю., Андрусенко А. Н., Чернов В. И., Кленков И. Р. Водно-электролитный обмен и функции выделительной системы у водолазов: новые подходы к определению устойчивости к декомпрессионной болезни // Воен.-мед. журн. 2018. Т. 339, № 4. С. 42–48 [Zverev D. P., Myasnikov A. A., Shitov A. Yu., Andrusenko A. N., Chernov V. I., Klenkov I. R. Water-electrolyte metabolism and excretory system functions in divers: new approaches to determination of dysbarism resistance // Military Medical Journal. 2018. Vol. 339, No 4. p. 42–48 (In Russ.)].

13. Зверев Д. П., Мясников А. А., Шитов А. Ю., Андрусенко А. Н., Чернов В. И., Исрафилов З. М., Кленков И. Р. Влияние факторов повышенного давления газовой среды на состояние водно-электролитного обмена организма при водолазных спусках // Военно-медицинский журнал. 2022. Т. 343, № 9. С. 49–60 [Zverev D. P., Myasnikov A. A., Shitov A. Yu., Andrusenko A. N., Chernov V. I., Israfilov Z. M., Klenkov I. R. Influence of factors of increased pressure of the gaseous medium on the state of water-electrolyte metabolism of the body during diving descents // Military Medical Journal. 2022. Vol. 343, No 9. p. 49–60 (In Russ.)]. doi: 10.52424/00269050_2022_343_9_49

14. Sagawa S., Claybaugh J. R., Shiraki K., Park Y. S., Mohri M., Hong S. K. Characteristics of increased urine flow during a dry saturation dive at 31 ATA // Undersea Biomed Res. 1990. № 17. p. 13–22.

15. Dronjak S., Jezova D., Kvetnansky R. Different effects of novel stressors on sympathoadrenal system activation in rats exposed to long-term immobilization // Ann N Y Acad Sci. 2004. 1018. p. 113–123. doi: 10.1196/annals.1296.013

16. Mrakic-Sposta S., Vezzoli A., D’Alessandro F., Paganini M., Dellanoce C., Cialoni D. Change in oxidative stress biomarkers during 30 days in saturation dive: a pilot study // Int. J. Environ. Res. Public Health. 2020. Vol. 17, No 19. pp. E7118. doi: 10.3390/ijerph17197118.

17. Hong S. K., Claybaugh J. R., Flattali V. Hana Kai II: a 17-day dry saturation dive at 18,6 ATA. Body fluid balance // Undersea Biomed. Res. 1977. Vol. 4, № 3. Р. 247–265.

18. Hong S. K., Claybaugh J. R., Flattali V. Fluid balance during a 24-day dry heliox saturation dive to 18,6 ATA (Hana Kai II) // Undersea Biomed. Res. 1976. Vol. 3, № 1. Р. 25-26.

19. Neuman T. S., Goad R. F., Hall D. Urinary excretion of water and electrolytes during open-sea saturation diving to 850 fsw // Undersea Biomed. Res. 1979. Vol. 6, № 3. P. 291–302.

20. Raymond L. W. Raymond N. S., Frattali V. P. In the weight loss of hiperbaric habitation a disorder of osmoregulation? // Aviat. Space. Environ. Med. 1980. Vol. 51, № 4. P. 397–401.

21. Денисенко Д. В., Проскурина Е. Ф., Шаркова К. С. Значение питьевого режима спортсменов, потеря воды и восполнение во время соревнований // Дневник науки. 2019. Т. 35, № 11. С. 5 [Denisenko D. V., Proskurina E. F., Sharkova K. S. Value of drinking mode of athletes, loss of water and replenishment during competitions // Dnevnik nauki. 2019. Vol. 35, No 11. p. 5 (In Russ.)]

22. Молчанов Д. В. Почки при гипероксии. М.: Бином, 2015. 160 с. ISBN 978-5-9518-0640-6 [Molchanov D. V. Buds during hyperoxia. Moscow: Binom, 2015. 160 p. (In Russ.)].

23. Hildebrandt W. Diuretic effect of hypoxia, hypocapnia, and hyperpnea in humans: relations to hormones and O2 hemosensitivity // J. Appl. Physiol. 2000. Vol. 88. P. 599–610.

24. Robach P., Dechaux M., Jarrot S., et al. Operation Everest III: role of plasma volume expansion on O2max during prolonged high altitude exposure // Appl. Physiol. 2000. Vol. 89. P. 29–37.

25. Мельников В. Н., Донгак А. О., Кривощеков С. Г., Айзман Р. И. Показатели гемодинамики у молодых мужчин при действии водной нагрузки в сочетании с кратковременной гипоксией // Бюллетень СО РАМН. 2007. № 3 (125). С. 159–162 [Melnikov V. N., Dongak A. O., Krivoshchekov S. G., Aizman R. I. An influence of water load with and without short-term acute normobaric hypoxia upon peripheral blood flow in young men // The Bulletin of Siberian Branch of Russian Academy of Medical Sciences. 2007. No 3 (125). p. 159–162 (In Russ.)].

26. Loeppky J. A., Icenogle M. V., Maes D., et al. Early fluid retension and severe acute mountain sickness // J. Appl. Physiol. 2005. Vol. 98. P. 591–597.

27. Konda N., Shiraki K., Takeuchi H., Nakayama H., Hong S. K. Seadragon VI: a 7-day dry saturation dive at 31 ATA. IV. Circadian analysis of body temperature and renal functions. Undersea Biomed. Res. 1987. 14(5). 413–423.

28. Matsuda M., Nakayama H., Kurata F. K. Physiology of man during 10-day dry heliox saturation vire (Seatopia) to 7 ATA II. Urinary water, electrolytes, ADH, and aldosterone // Undrsea Biomed. Res. 1975. Vol. 2, № 2. Р. 119–131.

29. Nakayama H. Hong S. K., Claybaugh J. R. Energy and body fluid balance during a 14-day dry saturation dive at 31 ATA (Seadragon IV) // Undersea Physiology VII. Proc. 7th Symp. on Underwater Physiology Ed. A. J. Bachrach, Mаtzen M. M: Undersea Med. Soc., Inc., Bethesda, Maryland. 1981. Р. 541–554.

30. Бычков С. А., Зверев Д. П., Кленков И. Р., Ярков А. М., Исрафилов З. М. Биохимический статус у водолазов-глубоководников после воздействия факторов водной среды // Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2022. № 4. С. 76–82 [Bychkov S. A., Zverev D. P., Klenkov I. R., Yarkov A. M., Israfilov Z. M. Biochemical effects in deep-sea divers exposed to aquatic enviromental factors // Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2022. № 4. Р. 76–82. (In Russ.)]. doi: 10.25016/2541-7487-2022-0-4-76-82

31. Simsek K., Ozler M., Yildirim О. A., Sadir S., Demirbas S., Oztosun M., Korkmaz A., Ay H., Oter S., Yildiz S. Evaluation of the Oxidative Effect of Long-Term Repetitive Hyperbaric Oxygen Exposures on Different Brain Regions of Rats // The Scientific World Journal. 2012. Vol. 2012. 849183 doi: 10.1100/2012/849183.

32. Алпатов В. Н., Ганапольский В. П., Родичкин П. В., Ганапольская М. В. Математическая модель прогноза безболевого течения декомпрессионной болезни у спортивных дайверов // Теория и практика физической культуры. 2020. № 11. С. 32–34. [Alpatov V. N., Ganapolsky V. P., Rodichkin P. V., Ganapolskaya M. V. Mathematical model to predict painless decompression illness in competitive diving // Theory and Practice of Physical Culture. 2020. № 11. Р. 32–34 (In Russ.)].

33. Наточин Ю. В. Вазопрессин: механизм действия и клиническая физиология // Проблемы эндокринологии. 2003. Т. 49, № 2. С.43–49 [Natochin Yu. V. Vasopressin: mechanism of action and clinical physiology // Problems of Endocrinology. 2003. Vol. 49, № 2. P. 43–50 (In Russ.)]. doi:10.14341/probl11534

34. Тюзиков И. А., Калинченко С. Ю., Ворслов Л. О., Тишова Ю. А. Вазопрессин: неклассические эффекты и роль в патогенезе ассоциированных с возрастом заболеваний // Эффективная фармакотерапия. 2015. № 26. С. 38–50 [Tyuzikov I. A., Kalinchenko S. Yu., Vorslov L. O., Tishova Yu. A. Vasopressin: non-classic effects and role in pathogenesis of age-associated diseases // Effective pharmacotherapy. 2015. № 26. P. 38–50 (In Russ.)].

35. Чеснокова Н. П., Понукалина Е. В., Жевак Т. Н., Афанасьева Г. А., Бизенкова М. Н. Роль надпочечников в регуляции водно-солевого гомеостаза в условиях нормы и патологии // Научное обозрение. Медицинские науки. 2016. № 1. С. 61–64 [Chesnokova N. P., Ponukalina E. V., Zhevak T. N., Afanasyeva G. A., Bizenkova M. N. The role of the adrenal glands in the regulation of water-salt homeostasis in the conditions of norm and pathology // Scientific Review. Medical sciences. 2016. No. 1. P. 61–64 (In Russ.)].

36. Орлов Ю. П., Говорова Н. В., Лукач В. Н., Кондратьев А. И., Какуля Е. Н., Климентьев А. В., Байтугаева Г. А., Глущенко А. В., Цилина С. В., Хиленко И. А. Гипероксия в ОРИТ и что изменилось через 100 лет в тактике использования кислорода в медицине: обзор литературы // Вестник интенсивной терапии им. А.И. Салтанова. 2022. № 2. С. 80–94 [Orlov Yu. P., Govorova N. V., Lukach V. N., Kondratyev A. I., Kakulya E. N., Klementyev A. V., Baytugaeva G. A., Tsilina S. V., Glushchenko A. V., Khilenko I. A. Hyperoxia in the ICU and what has changed in 100 years in the tactics of using oxygen in medicine: a review // Annals of Critical Care. 2022. № 2. P. 80–94 (In Russ.)]. doi: 10.21320/1818-474X-2022-2-80-94.

37. Надеев А. Д., Гончаров Н. В. Активные формы кислорода в клетках сердечно-сосудистой системы // Комплексные проблемы сердечно-сосудистых заболеваний. 2014. № 4. С. 80–94 [Nadeev A. D., Goncharov N. V. Reactive oxygen species in the cells of cardiovascular system // Complex Issues of Cardiovascular Diseases. 2014. № 4. P. 80–94 (In Russ.)]. doi: 10.17802/2306-1278-2014-4-80-94.

38. Hope A., Brekken R. A subjective evaluation of a drinking system for saturation divers // Diving Hyperb. Med. 2010. Vol. 40, № 1. P. 8–10.

39. Gempp E., Blatteau J. E., Pontier J. M., Balestra C., Louge P. Preventive effect of pre-dive hydration on bubble formation in divers // Br J Sports Med. 2009. Vol. 43, № 3. P. 224–228. doi: 10.1136/bjsm.2007.043240.

40. Tamma R., Sun L., Cuscito C., et al. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110, № 46. P. 18644–18649.

41. Зверев Д. П., Мясников А. А., Шитов А. Ю., Чернов В. И., Андрусенко А. Н., Кленков И. Р., Исрафилов З. М. Гормональные механизмы регуляции водно-электролитного обмена у водолазов // Известия Российской Военно-медицинской академии. 2021. Т. 40, № S2. С. 51–56 [Zverev D. P., Myasnikov A. A., Shitov A. Yu., Chernov V. I., Andrusenko A. N., Klenkov I. R., Israfilov Z. M. Hormonal mechanisms of regulation of water-electrolyte exchange of divers // Russian Military Medical Academy reports. 2021. Vol. 40, № S2. P. 80–94 (In Russ.)].

42. Wang Q., Guerrero F., Theron M. Pre-hydration strongly reduces decompression sickness occurrence after a simulated dive in the rat // Diving Hyperb. Med. 2020. Vol. 50, N 3. P. 288–291. doi: 10.28920/dhm50.3.288-291.

43. Vallee N., Desruelle A. V., Boussuges A., Rives S., Risso J. J., Dugrenot E., Guernec A., Guerrero F., Tardivel C., Martin J. C. Evidence of a hormonal reshuffle in the cecal metabolome fingerprint of a strain of rats resistant to decompression sickness // Scientific Reports. 2021. Vol. 11, No 1. pp. 3–17. doi: 10.1038/s41598-021-87952-y.

44. Fahlman A., Dromsky D. M. Dehydration effects on the risk of severe decompression sickness in a swine model // Aviat. Space Environ. Med. 2006. Vol. 77, № 2. pp.102–106.

45. Зверев Д. П., Шитов А. Ю., Мясников А. А., Андрусенко А. Н., Чернов В. И., Кленков И. Р., Исрафилов З. М. Феномен «диуреза давления»: механизмы возникновения и физиологическое значение в практике медицинского обеспечения водолазов: проспективное когортное исследование // Морская медицина. 2023. Т. 9, № 1. С. 73–86 [Zverev D. P., Shitov A. Yu., Myasnikov A. A., Andrusenko A. N., Chernov V. I., Klenkov I. R., Israfilov Z. M. «Pressure diuresis» phenomenon: mechanisms and physiological significance in diving medical support practice: prospective cohort study // Marine Medicine. 2023. Vol. 9, No 1, pp. 73–86 (In Russ.)]. doi: 10.22328/2413-5747-2023-9-1-73-86.

46. Голубев В. Н., Королев Ю. Н., Мургаева Н. В., Стрельцова К. Г. Адаптивные реакции организма человека на воздействие гипоксии // Известия Российской военно-медицинской академии. 2019. Т. 38, № 3. С. 178–182 [Golubev V. N., Korolev Yu. N., Murgaeva N. V., Strel’tsova K. G. Adaptive reactions of the human body to hypoxia // Russian Military Medical Academy reports. 2019. Vol. 38, No 3. pp. 178–182 (In Russ.)].

47. Семенцов В. Н., Иванов И. В. Функциональные тесты для профессионального отбора водолазов и кессонщиков // Известия Российской военно-медицинской академии. 2019. Т. 38, № 3. С. 207–216 [Sementsov V. N., Ivanov I. V. Functional tests for professional screening of divers and caissons // Russian Military Medical Academy reports. 2019. Vol. 38, No 3. pp. 207–216 (In Russ.)].

48. Медведев Л. Г., Стаценко А. В., Апчел В. Я., Бакланов Д. В., Дмитрук В. И., Лупанов А. И. Механизм нарушений функций мозга при кислородном отравлении и азотном наркозе у водолазов и подводников // Вестник Российской военно-медицинской академии. 2012. Т. 38, № 2. С. 74–78 [Medvedev L. G., Statsenko A. V., Apchel V. Ya., Baklanov D. V., Dmitryk A. I., Lupanov A. I. The mechanism of disorders of the brain in oxygen poisoning and nitrogen narcosis in divers and submariners // Bulletin of the Russian Military Medical Academy. 2012. Vol. 38, No 2. pp. 74–78 (In Russ.)].

49. Яхонтов Б. О. Физиологические факторы, лимитирующие глубину водолазных погружений // Международный журнал прикладных и фундаментальных исследований. 2019. № 7. С. 23–30 [Yakhontov B. O. Physiological factors limiting the depth of diving dives // International Journal of Applied and Fundamental Research. 2019. No. 7. pp. 23–30 (In Russ.)]. doi: 10.17513/mjpfi.12793.

50. Попова Ю. А, Буравкова Л. Б., Павлов Б. Н. Метаболические и гормональные показатели крови человека при длительном пребывании в барокамере по режиму лечебной рекомпрессии // Авиакосмическая и экологическая медицина. 2005. Т. 39, № 5. С. 31–36 [Popova Yu. A., Buravkova L. B., Pavlov B. N. Metabolic and hormonal parameters of humans during long-term hyperbaric exposure (the recompression treatment table) // Aerospace and environmental medicine. 2005. Vol. 39, No 5. pp. 31–36 (In Russ.)].

51. Deb S. K., Swinton P. A., Dolan E. Nutritional considerations during prolonged exposure to a confined, hyperbaric, hyperoxic environment: recommendations for saturation divers // Extrem Physiol Med. 2016. №. 5. P. 1. doi: 10.1186/s13728-015-0042-9

52. Benardot D., Zimmermann W., Cox G. R., Marks S. Nutritional recommendations for divers // Int J Sport Nutr Exerc Metab. 2014. Vol. 24, № 4. pp. 392–403. doi: 10.1123/ijsnem.2014-0012

53. Lalieu R. C., Akkerman I., Am van Ooij P. J., Boersma-Voogd A. A., A van Hulst R. Nutritional status of patients referred for hyperbaric oxygen treatment; a retrospective and descriptive cross-sectional study // Diving Hyperb Med. 2021. Vol. 51, № 4. pp. 322–327. doi: 10.28920/dhm51.4.322-327


Review

For citations:


Shitov A.Yu., Zverev D.P., Myasnikov A.A., Klenkov I.R., Andrusenko A.N., Israfilov Z.M., Kolchanov S.P. Water-electrolyte metabolism and renal function under action of hyperbaric factors. Marine Medicine. 2024;10(2):7-20. (In Russ.) https://doi.org/10.22328/2413-5747-2024-10-2-7-20

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-5747 (Print)
ISSN 2587-7828 (Online)