Preview

Helium physico-chemical «recruitment» of pulmonary alveols in prevention of alveolar collapse and prevention of acute respiratory distress syndrome in patients with severe COVID19 pneumonia

https://doi.org/10.22328/2413-5747-2020-6-4-73-81

Abstract

Purpose. Show the significance of helium heated to 95°C (as part of Thermogeliox) in reducing the surface tension of water, including the liquid and cellular fraction of blood, which normalizes the movement of red blood cells in the capillaries and preserves the physiological function of the alveolar — capillary space, improving gas exchange in the alveoli.
Materials and methods. The data on the dynamics of complaints and anamnesis, clinical symptoms, results of laboratory and instrumental studies, the results of pathological, pathomorphological and histological manifestations of severe coronavirus pneumonia (CVP) complicated by acute respiratory distress syndrome (ARDS) were analyzed.
Results and its discussion. In the complex treatment of severe coronavirus infection (CVI), it is proposed to use the modern innovative medical technology «SIMT», which includes a modern device «Ingalit B2–01», inhaling a respiratory gas mixture heated to 90–100°C — thermogeliox, consisting of oxygen 20–30% and helium 70–80%, alternating with inhalation of pulmonary surfactant by a nebulizer. It is advisable to inject the anticoagulant under the skin. It has been shown that the development of ARDS in CEP is associated with acute coronavirus alveolitis. A quick positive systemic therapeutic effect — the prevention of ARDS in patients with severe CVP when using our proposed «SIMT» is due to a number of physicochemical and physiological effects of thermal helium.

About the Authors

A. S. Svistov
Military Medical Academy named after S.M. Kirov
Russian Federation

Aleksandr S. Svistov

Saint-Petersburg



I. G. Mosyagin
High Command of the Navy
Russian Federation

Igor G. Mosyagin

Saint-Petersburg



O. E. Simakina
Institute of experimental medicine
Russian Federation

Olga E. Simakina

Saint-Petersburg



References

1. Glybochko P.V. Clinical characteristics of 1007 patients with severe SARS-CoV-2 pneumonia who needed respiratory support. Clinical pharmacology and therapy, 2020, Vol. 29, No. 2, рр. 21–29 (In Russ.).

2. Murthy S., Charles D.G., Robert A.F. Carefor Critically Ill Patients With COVID-19 // JAMA. 2020. Vol. 323 (15). Р. 14991500. doi: 10.1001/jama.2020.3633.

3. Omelyanovsky V.V., Antonov A.A., Bezdenezhnykh T.P., Khachatryan G.R. Systematic review of current scientific data on the use of medicines in the treatment of new coronavirus infection COVID-19. Medical technology. Evaluation and selection, 2020, No. 1, рр. 8–18. doi: 10.31556/2219-0678.2020.39.1.008-018 (In Russ.).

4. Ware L.B., Matthay M.A. The acute respiratory distress syndrome (англ.) // The New England Journal of Medicine. 2000. May. Vol. 342, No. 18. P. 1334–1349. doi: 10.1056/NEJM200005043421806. PMID 10793167.

5. Moloney E.D., Evans T.W. Pathophysiology and pharmacological treatment of pulmonary hypertension in acute respiratory distress syndrome (англ.) // Eur. Respir. J. 2003. April, Vol. 21, No. 4. P. 720–727. PMID 12762363.

6. Crowe S.M. Pathogenesis. 2006. 435 p.

7. Galkin A.A., Demidova V.S. The сentral role of neutrophils in the pathogenesis of acute lung injury syndrome (acute respiratory distress syndrome). Advances in modern biology, 2014, Vol. 134, No. 4, рp. 377–394 (In Russ.).

8. Behrens Е.М., Koretzky G.A. Treatment of cytokine storm syndromes. 2017. 1137 р.

9. Sinha Р., Matthay M.A., Calfee C.S. Is a «Cytokine Storm» Relevant to COVID-19? (англ.) // JAMA Internal Medicine. 2020. 1 September. Vol. 180, iss. 9. P. 1152. doi: 10.1001/jamainternmed.2020.3313. PMID 32602883.

10. Sungnak W. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes // Nat. Med. 2020. Vol. 26. P. 681–687.

11. Jackson S.P., Darbousset R., Schoenwaelder S.M. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms // Blood. 2019. Vol. 133. Р. 906–918.

12. Chernyaev A.L., Samsonova M. Etiology, pathogenesis and pathological anatomy of diffuse alveolar injury. General intensive care, 2000, No. 5, рр. 13–16 (In Russ.).

13. Vlasenko A.V., Evdokimov E.A., Rodionov E.P. Modern principles of correction of hypoxia in ARDS of various Genesis. Part 1. Bulletin of anesthesiology and resuscitation, 2020, No. 17 (3), рр. 61–78 (In Russ.). https://doi.org/10.21292/2078-5658-2020-17-3-61-78.

14. Dandachi D., Rodriguez-Barradas М.С. Viral pneumonia: etiologies and treatment. Abstract // J. Investig. Med. 2018 Aug. Vol. 66 (6). P. 957–965. doi: 10.1136/jim-2018–000712.

15. Dreyfuss D., Saumon G. Ventilator-induced lung injury: lessons from experimental studies (англ.) // American Journal of Respiratory and Critical Care Medicine (англ.) рус. 1998. January (Vol. 157, No. 1). P. 294–323. PMID 9445314.

16. Krasnovsky V.L., Grigoriev S.P., Alyokhin A.I., Potapov V.I. Application of a heated oxygen-helium mixture in the complex treatment of patients with community-acquired pneumonia. Clinical medicine, 2013, No. 5, рр. 38–41 (In Russ.).

17. Khaydarov G.G., Khaydarov A.G., Mashek A.Ch. Physical nature of surface tension of a liquid. Bulletin of the Saint Petersburg University. Series 4 (Physics, chemistry), 2011, Release. 1, рp. 3–8 (In Russ.).

18. Khaydarov G.G. Оn the relationship of surface tension with the heat of vaporization. Journal of physical chemistry, 1983, No. 10, pp. 2528–2530 (In Russ.).

19. Khaidarov G.G., Khaidarov A.G., Mašek A.C. The еffect of temperature on surface tension. Bulletin of the Saint Petersburg University. Series 4 (Physics, chemistry), 2012, Release 1, рp. 24–28 (In Russ.).

20. Kunitsyn V.G., Mokrushnikov P.V., Panin L.E. Mechanism of erythrocyte microcirculation in the capillary bed with a physiological pH shift. Byul. SO RAMS, 2007, No. 5, рр. 28–30 (In Russ.).

21. Shakhnovich P.G. Peripheral blood circulation in conditions of hypoxic and circulatory hypoxia. Bulletin of the Russian military medical Academy, 2016, No. 1 (53), рp. 13–16 (In Russ.).


Review

For citations:


Svistov A.S., Mosyagin I.G., Simakina O.E. Helium physico-chemical «recruitment» of pulmonary alveols in prevention of alveolar collapse and prevention of acute respiratory distress syndrome in patients with severe COVID19 pneumonia. Marine Medicine. 2020;6(4):73-81. (In Russ.) https://doi.org/10.22328/2413-5747-2020-6-4-73-81

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-5747 (Print)
ISSN 2587-7828 (Online)