Targeted sequencing of drug resistance genes Mycobacterium tuberculosis
https://doi.org/10.22328/2413-5747-2025-11-1-7-26
EDN: PKFIDR
Abstract
INTRODUCTION. Drug-resistant forms of tuberculosis and their prevalence are an urgent problem of modern medicine. Genetic mechanisms of drug resistance are the key to understanding the possibilities of diagnostic methods for therapy-resistant tuberculosis. Currently, both phenotypic signs of pathogen resistance to TB drugs and genetic markers of resistance are being identified. A wide range of thematic publications and studies on gene mutations is associated with resistance to TB drugs. OBJECTIVE. Analyze the most effective molecular biological technologies and methods allowing to determine resistance of the tuberculosis pathogen to drugs recommended by the World Health Organization (WHO) in treatment regimens. To present the highest incidence of individual mutations associated with antibiotic resistance genes, which form a significant level of resistance to antituberculosis drugs. Consider the spectrum of mutations of drug resistance genes that provide the greatest contribution to its formation.
MATERIALS AND METHODS. Materials of Russian and foreign authors, WHO recommendations related to the prevalence and assessment of the significance of mutations of individual antibiotic resistance genes in different countries and regions were used. Periodical literature sources from international and Russian free databases were analyzed: PubMed, WHO website (https://www.who.int), international tuberculosis database - Tuberculosis Drug Resistance Mutation Database (TBDReaMDB). (http://www.tbdreamdb.com), MDPI, eLIBRARY, CyberLeninka, and a sample of articles by keywords for 20 years (from 2004 to 2024).
RESULTS. The most effective molecular biological technologies that enable the detection of mutations in drug resistance genes are presented. Targeted sequencing allows the targeted selection of primers to fragments of genes associated with drug resistance to obtain the results necessary to assess the level of resistance of mycobacteria to the main drugs included in the treatment regimen. The most frequent localizations of mutations in Mycobacterium tuberculosis genes associated with significant levels of drug resistance have been systematized. DISCUSSION. The prevalence of drug-resistant strains varies across countries and regions and can only be compared using a reliable and verifiable genetic method. Targeted sequencing is a method for effective surveillance of drug-resistant TB, and phenotypic testing in the Bactec MGIT system is used to validate this information. Results of the prevalence of single nucleotide polymorphisms obtained by sequencing methods should complement and clarify the data detected by PCR methods.
CONCLUSION. Targeted Sanger sequencing of drug resistance genes occupies a worthy place among other molecular genetic methods of tuberculosis research. Targeted sequencing has a special role in the analysis of genes associated with drug resistance to long-standing first-line drugs with atypical localization of mutations; it is also the only method for the study of genes associated with resistance to new and emerging drugs. Adequate selection of primer sets for the regions of drug resistance genes encoding polypeptide chain positions in M. tuberculosis enzyme complexes that are critical for the correct formation of the globular structure plays a key role in the efficiency of Sanger sequencing.
Keywords
About the Authors
Igor K. KovrovRussian Federation
Bacteriologist, Laboratory Researcher at the Central Research Laboratory
Arkhangelsk
Yuliya A. Popova
Russian Federation
Postgraduate Student of the Department of Phthisiopulmonology
Arkhangelsk
Irina A. Popova
Russian Federation
Student of the Faculty of Medical Biochemistry
Arkhangelsk
Elena I. Nikishova
Russian Federation
Dr. of Sci. (Med.), Professor of the Department of Phthisiopulmonology
Arkhangelsk
Andrei O. Mariandyshev
Russian Federation
Dr. of Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Department of Phthisiopulmonology
Arkhangelsk
References
1. Andreevskaya S. N., Smirnova T. G., Larionova E. E., Andrievskaya I. Yu., Sevastyanova E. V., Chernousova L. N., Ergeshov A. E. Mutations in the M. tuberculosis genome associated with genotypic MDR: dominant variants in the modern (2011–2018) population of Russian strains and meta-analysis of global data. The Ural medical journal, 2018, No. 08 (163), pp. 5–9 (In Russ.)
2. Zhuravlev V. Yu., Archakova L. I., Manicheva O. A., Vinogradova T. I., Elkin A. V., Levashev Yu. N. Molecular and genetic methods in diagnostics and therapy of tuberculosis of lungs. Methods of diagnostics and technology, 2009, Vol. XXVI, No. 5, pp. 100–105 (In Russ.)
3. Khromova P. A., Ogarkov O. B., Zhdanova S. N., Sinkov V. V., Moiseyeva E. Ya, Tsyrenova T. A., Koshcheev M. E., Zorkaltseva E. Yu., Savilov E. D. Identification of highly transmissible genotypes of the pathogen in clinical material for the prognosis of an unfavorable course of tuberculosis. Clinical laboratory diagnostics, 2017, Vol. 62, No. 10, pp. 622–627 (In Russ.) doi: https://dx.doi.org/10.18821/0869-2084-2017-62-10-622-627.
4. Burmistrova I. A., Samoylova A. G., Tyulkova T. E., Vaniev E. V., Balasanyants G. S., Vasilyeva I. A. Drug resistance of M. tuberculosis (historical aspects, current level of knowledge). Tuberculosis and Lung Diseases, 2020, Vol. 98, No. 1, pp. 54–61 (In Russ.) doi: http://doi.org/10.21292/2075-1230-2020-98-1-54-61.
5. Kozhamkulov U. A., Kairov C. U., Rakhimova S. E., Erezhepov D. A., Akhmetova A. Z., Molkenov A. B., Utyubayev A., Akilzhanova A. R. Identification of genetic of drug resistance based on complete genomes of clinical isolates of M. tuberculosis. KzNaU Bulletin. Biology series, 2016, No. 2 (67), pp. 95–103 (In Russ.)
6. Salina T. Yu., Morozova T. I. Prevalence and Patterns of Gene Mutations Associated with M. tuberculosis Resistance to Isoniazid and Rifampicin in Patients with Different Clinical Manifestations of Tuberculosis. Tuberculosis and Lung Diseases, 2023, Vol. 101, № 1, pp. 28–33 (In Russ.) doi: http://doi.org/10.58838/2075-1230-2023-101-1-28-33.
7. Salina T. Yu., Morozova T. I. Prevalence of mutations in M. tuberculosis genes coding resistance to isoniazid and rifampicin in tuberculosis patients from different age groups. Tuberculosis and Lung Diseases, 2019, Vol. 97, No. 4, pp. 12–18 (In Russ.) doi: http://doi.org/10.21292/2075-1230-2019-97-4-12-18.
8. Abubakar I., Zignol M., Falzon D., Raviglione M., Ditiu L., Masham S., Adetifa I., Ford N., Cox H., Lawn S. D, Marais B. J., McHugh T. D., Mwaba P., Bates M., Lipman M., Zijenah L., Logan S., McNerney R., Zumla A., Sarda K., Nahid P., Hoelscher M., Pletschette M., Memish Z. A., Kim P., Hafner R., Cole S., Migliori G. B., Maeurer M., Schito M., Zumla A. Drug-resistant tuberculosis: time for visionary political leadership. Lancet Infectious Diseases, 2013, Vol. 13, Issue 6 М, pp. 529–539. Published Online March 24, 2013. doi: http://dx.doi.org/10.1016/S1473-3099(13)70030-6.
9. Andreevskaya S. N., Smirnova T. G., Chernousova L. N., Larionova E. E., Kiselyova E. A., Ergeshov A. E. Features of genotypic resistance to fluoroquinolones in Mycobacterium tuberculosis, circulating in the Russian Federations. Messenger RGMU, 2022, No. 5, pp. 15–22 (In Russ.) doi: https://doi.org/10.24075/vrgmu.2022.054.
10. Rowneki M., Aronson N., Du P., Sachs P., Blakemore R., Chakravorty S., et al. Detection of drug resistant M. tuberculosis by high-throughput sequencing of DNA isolated from acid fast bacilli smears. PloS ONE, 2020, Vol 15, No. 5, e0232343. 17 p. doi: https://doi.org/10.1371/journal.pone.0232343.
11. Mokrousov I. V. Some features of the genome structure and evolution of M. tuberculosis. Infection and immunity, 2011, Vol. 1, No. 3, pp. 211–220 (In Russ.)
12. Sinkov V. V., Kondratov I. G., Ogarkov O. B., Zhdanova S. N., Noskov A. P., Khromova P. A., Orlova E. A., Labygina A. V., Rychkova L. V., Kolesnikova L. I. Online service for interpretation of the resistance prediction results to bedaquiline by the molecular data. Acta Biomedica Scientifica, 2023, Vol. 8, No. 6, pp. 124–129 (In Russ.) doi: http://doi.org/10.29413/ABS.2023-8.6.11.
13. Seifert M., Catanzaro D., Catanzaro A., Rodwell T. C. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review.PLoS ONE, 2015, Vol. 10, No. 3, e0119628. 13 p. doi: https://doi.org/10.1371/journal.pone.0119628.
14. Domotenko L. V., Morozova T. P., Shemyakin I. G., Shepelin A. P. Experience of use of TB of test set for the accelerated determination of medicinal sensitivity of M. tuberculosis. Clinical laboratory diagnostics, 2020, Vol. 65, No. 2, pp. 122–130 (In Russ.) doi: http://dx.doi.org/10.18821/0869-2084-2020-65-2-122-130.
15. Ergeshov A. E., Chernousova L. N., Andreevskaya S. N. New technologies for the diagnosis of drug-resistant tuberculosis. Annals of the Russian academy of medical sciences, 2019, Vol. 74, No. 6, pp. 413–422 (In Russ.) doi: http://doi.org/10.15690/vramn1163.
16. Ezewudo M., Posey J., Schito M., Borens A., Chiner-Oms A., Miotto P., Chindelevitch L., Comas I., Rodwell T. C., Starks A. M., Hanna C. D., Liwski R., Zignol M., Gilpin C., Niemann S., Kohl T., Warren R. M., Crook D., Gagneux S., Hoffner S., Rodrigues C., Engelthaler D. M., Alland D., Rigouts L., Lange C., Hasan R., McNerney R., Cirillo D. M., Dheda K. Integrating standardized whole genome sequence analysis with a global M. tuberculosis antibiotic resistance knowledgebase. Scientific reports. 2018; 8(1): 15382. doi: https://doi.org/10.1038/s41598-018-33731-1.
17. Mäkinen J., Marttila H. J., Marjamäki M., Viljanen M. K., Soini H. Comparison of two commercially available DNA line probe assays for detection of multidrug-resistant Mycobacterium tuberculosis. Journal of clinical microbiology, 2006, Vol. 44, No. 2, pp. 350–352. 0095-1137/06/$08.00 0. doi: http://dx.doi.org/10.1128/JCM.44.2.350–352.
18. Kushnir N. P., Lozhkin V. S., Kovalevich N. L., Kolomeets A. N. Comparative analysis of results molecular and genetic and cultural methods in determination of drug sensitivity of Mycobacterium tuberculosis. Tuberculosis and pulmonary diseases, 2019, Vol. 97, No. 11, pp. 65–66 (In Russ.).
19. Chernousova L. N., Andreevskaya S. N., Smirnova T. G., Larionova E. E., Ivakhnenko O. I., Novoselova E. A., Shevkun N. A. Drug-resistant tuberculosis: prospects for accelerated diagnostics and chemotherapy. Bacteriology. 2017. No. 2 (1). pp. 25–34 (In Russ.) doi: http://doi.org/10.20953/2500-1027-2017-1-25-34.
20. Narang A., Marras S.A.E., Kurepina N., Chauhan V., Shashkina, E., Kreiswirth B., Varma-Basil M., Vinnard C., Subbian S. Ultrasensitive detection of multidrug-resistant M. tuberculosis using superselective primer-based real-time PCR assays. International Jornal Molecular Sciences, 2022, Vol. 23, No. 19, p. 15752. doi: https://doi.org/10.3390/ijms232415752.
21. Kozhamkulov U. A., Kairov U. E., Erezhepov D. A., Akhmetova A. Zh., Molkenov A. B., Akilzhanova A. R. Whole-genome sequencing of M. tuberculosis clinical isolates with different drug susceptibility profiles // Biotechnology theory and practice. 2016. 12 p. (In Russ.)
22. NGS: High Throughput Sequencing / D. V. Rebrikov, D. O. Korostin, E. S. Choubina, V. V. Ilyinsky; under a gen, edit. of D.V. Rebrikov. The 5th prod. Moscow: Laboratory of knowledge, 2023. 232 p.: ill. (In Russ.)
23. Arustamova T. R. DNA sequencing device “Nanofor 05”//REMEDY ALLOWANCE Volga region, 2015, Vol. 138, № 8, p. 31 (In Russ.)
24. Belov D. A., Belov Yu. V., Manoylov V. V., Kurochkin V. E. Ways of processing of results of genetic analyses. Scientific instrument making, 2014, Vol. 24, No. 3, pp. 87–91 (In Russ.)
25. Bocharova D. V., Alekseev Ya. I., Volkov A. A., Lavrov G. S., Plugov A. G., Volkov I. A., Chemigov A. A., Bardin B. V., Kurochkin V. E. Determination of the maximum length of DNA deciphered with an accuracy of 99 % in polymer on the basis of linear N,N-polydimethylacrylamide by method capillary gel electrophoresis about the laser - the induced fluorescence. The journal of analytical chemistry, 2021, Vol. 76, No. 12, pp. 1100–1106 (In Russ.)
26. Volkov A. A., Volkov I. A., Plugov A. G., Kulyabina E. V., Melkova O. N., Lavrov G. S., Bocharova D. V., Alekseev Ya. I. Genetic analyzer Nanophore 05 as a measuring instrument for DNA sequencing. Measuring equipment. 2021. No. 1. pp. 60–65 (In Russ.) doi: https://doi.org/10.32446/0368-1025it.2021-1-60-65.
27. Kurochkin V. E., Alekseev Ya. I., Petrov D. G., Evstropov A. A. Domestic devices for molecular genetic analysis: developments of the IAP RAS and SINTOL LLC. Russian Military Medical Academy Reports, 2021, Vol. 40, No. 3, pp. 69–74 (In Russ.) doi: https://doi.org/10.17816/rmmar76918.
28. Luna J. F., Montero H., Sampieri C. L., Muñiz-Salazar R., Zenteno-Cuevas R. Sequencing of the entire rpob gene and characterization of mutations in isolates of M. tuberculosis circulating in an endemic tuberculosis setting. Journal of Global Antimicrobial Resistance, 2019, Vol. 19, pp. 98–103. doi: https://doi.org/10.1016/j.jgar.2019.03.001.
29. Tafess K., Ng T. T. L., Lao H. Y., Leung K. S. S., Tam K. K. G., Rajwani R., Tam S. T. Y., Ho L. P. K., Chu C. M. K., Gonzalez D., Sayada C., Ma O. C. K., Nega B. H., Ameni G., Yam W. C., Siu G. K. H. Targeted-sequencing workflows for comprehensive drug resistance profiling of M. tuberculosis cultures using two commercial sequencing platforms: comparison of analytical and diagnostic performance, turnaround time, and cost. Clinical Chemistry Infectious Disease, 2020, Vol. 66, No. 6, pp. 809–820. doi: https://doi.org/10.1093/clinchem/hvaa092.
30. Sikkema-Raddatz B., Johansson L. F., de Boer E. N., Almomani R., Boven L. G., van den Berg M. P.,van Spaendonck-Zwarts, K.Y., van Tintelen, J.P., Sijmons, R.H., Jongbloed, J.D.H., & Sinke, R.J. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Human Mutation, 2013, Vol. 34, No. 7, pp. 1035–1042. doi: https://doi.org/10.1002/humu.22332.
31. Iwamoto T., Murase Y., Yoshida S., Aono A., Kuroda M., Sekizuka T., et al. Overcoming the pitfalls of automatic interpretation of whole genome sequencing data by online tools for the prediction of pyrazinamide resistance in M. tuberculosis. PLoS ONE, 2019, Vol. 14, No. 2, 13 p. doi: https://doi.org/10.1371/journal.pone.0212798.
32. Muminov T. A., Zhakipbayeva B. T., Beysembayeva Sh. A., Berikhanova K. E., Akilzhanova A. R., Terlikbayeva A. M., Darisheva M. A. Molekulyarno-genetic monitoring population variabilities strains MBT // Medicine. 2013. № 5. pp. 40–45 (In Russ.)
33. Zhdanov S. N., Ogarkov O. B., Pholwat S., Lats A. A., Alekseeva G. I., Kravchenko A. F., Zorkaltseva E. Yu., Houpt E., Savilov E. D. Harakteristik of the mutations responsible for resistance to antitubercular medicines of the first and second row at strains M. tuberculosis circulating in the territory of the Irkutsk region and the Sakha (Yakutia) Republic. The Siberian medical magazine. 2012, No. 6, pp. 64–67 (In Russ.)
34. Cabibbe A.M., Walker T.M., Niemann S. et al. Whole genome sequencing of M. tuberculosis//European Respiratory Journal, 2018, Vol. 52, No. 5, pp. 1801163. doi: 10.1183/13993003.01163-2018.
35. Timmins G. S., Deretic V. Mechanisms of action of isoniazid. Molecular Microbiology, 2006, Vol. 62, No. 5, pp. 1220–1227. doi: https://doi.org/10.1111/j.1365-2958.2006.05467.x.
36. Quantitative measurement of antibiotic resistance in M. tuberculosis reveals genetic determinants of resistance and susceptibility in a target gene approach // The CRyPTIC Consortium. Nature Communications. 2024, Vol. 15, No. 1, pp. 1–13. doi: https://doi.org/10.1038/s41467-023-44325-5.
37. Kadura S., King N., Nakhoul M., Zhu H., Theron G., Köser C.U., Farhat M. Systematic review of mutations associated with resistance to the new and repurposed M. tuberculosisdrugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. Systematic review. Journal Antimicrobial Chemotherapy, 2020, Vol. 75, pp. 2031–2043. doi: https://doi.org/10.1093/jac/dkaa136.
38. Abraham A. O., Nasiru A. U., Abdulazeez A. K., Seun O.O. and Ogonna D. W. Mechanism of drug resistance in Mycobacterium tuberculosis. American Journal of Biomedical Science & Research, 2020, Vol. 7, No. 5, pp. 378–383. MS.ID.001181. doi: http://doi.org/10.34297/AJBSR.2020.07.001181.
39. Palomino J. C., Martin A. Drug Resistance Mechanisms in M. tuberculosis. Antibiotics. 2014, No. 3, pp. 317–340. doi: https://doi.org/10.3390/antibiotics3030317. www.mdpi.com/journal/antibiotics.
40. Sajduda A., Brzostek A., Popławska M., Augustynowicz-Kopec E., Zwolska Z., Niemann S., Dziadek J., Hillemann D. Molecular characterization of rifampin- and isoniazid-resistant M. tuberculosis strains isolated in Poland. Journal of clinical microbiology, 2004, Vol. 42, No. 6, pp. 2425–2431 doi: https://journals.asm.org/journal/jcm.
41. Sergeychik D. V. Stability M. tuberculosis to antitubercular medicines, relevance of their development and application // the collection of materials of the 70th International academic and research conference of students and young scientists «Current problems of modern medicine and pharmacy – 2016», 2016, pp. 866–870 (In Russ.)
42. Ibrayeva A. R., Akhmetova A. Zh., Kozhamkulov U. A., Bismilda V. L., Alenova A. H., Chingisova L. T., Abildayev A. Sh., Ramankulov E. M. Genotyping and definition of medicinal stability of clinical isolates M. tuberculosis from various areas of Kazakhstan on the basis of DNA sequencing and MIRU-VNTR analysis. Biotechnology. Theory and practice, 2012, No. 2, pp. 71–77 (In Russ.)
43. Isakova Zh. T. Mutations in genes rpoB, katG, inhA and ahpC in M strains. tuberculosis, circulating in the Kyrgyz Republic. The Siberian medical journal, 2008, Release 2, No. 3, pp. 89–91 (In Russ.)
44. Chikaonda T., Ketseoglou I., Nguluwe N., et al. Molecular characterisation of rifampicin resistant M. tuberculosis strains from Malawi. African Journal of Laboratory Medicine, 2017, Vol. 6, No. 2, pp. 463. doi: https://doi.org/10.4102/ajlm.v6i2.463.
45. Campbell P. J., Morlock G. P., Sikes R. D., Dalton T. L., Metchock B., Starks A. M., Hooks D. P., Cowan L. S., Plikaytis B. B., Posey J. E. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of M. tuberculosis. Antimicrobial Agents and Chemotherapy, 2011, Vol. 55, No. 5, pp. 2032–2041. doi: 10.1128/aac.01550-10.
46. Costa E. R. D., Ribeiro M. O., Silva M. S. N., Arnold L. S., Rostirolla D. S., Cafrune P. I., Espinoza R. C., Palaci M., Telles M. A., Ritacco V., Suffys P. N., Lopes M. L., Campelo C. L., Miranda S. S., Kremer K., Almeida da Silva P. E., Fonseca L. de S., Ho J. L., Kritski A. L., Rossetti M. L. R. Correlations of mutations in katG, oxyR-ahpC and inhA genes and in vitro susceptibility in M. tuberculosis clinical strains segregated by spoligotype families from tuberculosis prevalent countries in South America. BMC Microbiology, 2009, No. 9, pp. 39. doi: 10.1186/1471-2180-9-39.
47. Prim R. I., Schörner M. A., Senna S. G., Nogueira C. L., Figueiredo A. C. C., de Oliveira J. G., Rovaris D. B., Bazzo M. L. Molecular profiling of drug resistant isolates of M. tuberculosis in the state of Santa Catarina, southern Brazil. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro. 2015, Vol. 110, No. 5, pp. 618–623.
48. Maqusood M., Farooq U., Nudrat S. Molecular detection of rifampicin and isoniazid resistant M. tuberculosis and their associated mutation pattern from smear positive sputum samples from a tertiary care centre of west U.P. Asian Journal of Medical Research. 2019, Vol. 8, Issue 2, pp. 5–8. doi: 10.21276/ajmr.2019.8.2.PM2.
49. Mesfin E.A., Merker M., Beyene D., Tesfaye A., Shuaib Y. A., Addise D. et al. Prediction of drug resistance by Sanger sequencing of M. tuberculosis complex strains isolated from multidrug resistant tuberculosis suspect patients in Ethiopia. PLoS ONE. 2022, Vol. 17, No. 8, pp. 17. doi: 10.1371/journal.pone.0271508.
50. Krasnova M. A., Belilovsky E. M., Borisov S. E., Khakhalina A. A., Mikhaylova Yu. D., Nosova E. Yu. Gene mutation and drug resistance of M. tuberculosis in the patients followed up in the city of Moscow. Tuberculosis and Lung Diseases, 2019, Vol. 97, No. 12, pp. 34–44 (In Russ.) doi: 10.21292/2075-1230-2019-97-12-34-44
51. Toungoussova O. S., Caugant D. A., Sandven P., Mariandyshev A. O., Bjune G. Impact of drug resistance on fitness of M. tuberculosis strains of the W-Beijing genotype. FEMS Immunology and Medical Microbiology, 2004, No. 42, pp. 281–290.
52. Umpeleva T. V., Belousova K. V., Golubeva L. A., Boteva T. Yu., Yeremeyeva N. I., Vakhrusheva D. V. Genetic diversity of M. tuberculosis in the Yamalo-Nenets autonomous okrug. Tuberculosis and pulmonary diseases, 2019, Vol. 97, No. 6, p. 69 (In Russ.)
53. Jaiswal I., Jain A., Singh P., Verma S. K., Prakash S., Dixit P., Suryakant, Singh M. Mutations in katG and inhA genes of isoniazid-resistant and -sensitive clinical isolates of M. tuberculosis from cases of pulmonary tuberculosis and their association with minimum inhibitory concentration of isoniazid. Сlinical epidemiology and global health, 2017, No. 5, pp. 143–147.
54. Liguo L., Fengting J., Lihong C., Bing Z., Jie D., Lilian S., Yafang Z., Bo L., Yang Z., Jian Y., Yanlin Z., Qi J. & Xiaobing Z. The impact of combined gene mutations in inhA and ahpC genes on high levels of isoniazid resistance amongst kat G non-315 in multidrug-resistant tuberculosis isolates from China. Emerging Microbes & Infections. 2018, Vol. 183, No. 7, pp. 1–10. doi: 10.1038/s41426-018-0184-0.
55. Peretokina I. V., Krylova L. Yu., Freyman G. E., Noskova E. Yu., Zimenkov D. V. Study of mutations in the mmpR and atpE genes associated with the development of resistance to bedaquiline in M. tuberculosis. Tuberculosis and socially important disease, 2024, Vol. 12, No. 1, pp. 4–8 (In Russ.) doi: 10.54921/2413-0346-2024-12-1-4-8.
56. Andries K., Villellas C., Coeck N., Thys K., Gevers T., Vranckx L., Lounis N., de Jong B. C., Koul A. Acquired resistance of M. tuberculosis to bedaquiline. PLoS ONE, 2014, Vol. 9, Issue 7, pp. 11. doi: 10.1371/journal.pone.0102135.
57. Mokrousov I., Akhmedova G., Molchanov V., Fundovnaya E., Kozlova E., Ostankova Y., Semenov A., Maslennikova N., Leontev D., Zhuravlev V., Turkin E., Vyazovaya A. Frequent acquisition of bedaquiline resistance by epidemic extensively drug-resistant M. tuberculosis strains in Russia during long-term treatment. Clinical Microbiology and Infection, 2021, Vol. 27, pp. 478–480. doi: 10.1016/j.cmi.2020.08.030.
58. Heyckendorf J., Andres S., Köser C. U., Olaru I. D., Schön T., Sturegård E., Beckert P., Schleusener V., Kohl T. A., Hillemann D., Moradigaravand D., Parkhill J., Peacock S. J., Niemann S., Lange C., Merker M. What is resistance? Impact of phenotypic versus molecular drug resistance testing on therapy for multiand extensively drug-resistant tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, Vol. 62, Issue 2, pp. 12. doi: 10.1128/AAC.01550-17.
59. Martinovich V. V. Modern possibilities of treating tuberculosis with multidrug resistance of mycobacteria. Collection of materials of the LXXIII International scientific and practical conference of students and young scientists “Actual problems of modern medicine and pharmacy”. Minsk, 2019, pp. 167–171 (In Russ.)
60. Sandgren A., Strong M., Muthukrishnan P., Weiner B. K., Church G. M., Murray M. B. Tuberculosis Drug Resistance Mutation Database. PLoS Med, 2009, Vol. 6, Issue 2, pp. 0132–0136. doi: 10.1371/journal.pmed.1000002.
61. Sinkov V. V, Kondratov I. G., Ogarkov O. V., Zhdanova S. N., Sokolnikova N. A., Khromova P. A., Orlova E. A., Rychkova L. V., Kolesnikova L. I. Online service with automated M. tuberculosis. interpretation of sequencing data and prediction of Pyrazinamide resistance in Bulletin of Experimental Biology and Medicine, 2023, Vol. 174, No. 5, pp. 623–627. doi: 10.1007/s10517-023-05758-6.
Review
For citations:
Kovrov I.K., Popova Yu.A., Popova I.A., Nikishova E.I., Mariandyshev A.O. Targeted sequencing of drug resistance genes Mycobacterium tuberculosis. Marine Medicine. 2025;11(1):7-26. (In Russ.) https://doi.org/10.22328/2413-5747-2025-11-1-7-26. EDN: PKFIDR