Preview

Use of neural networks for medical and psychological support of military personnel: retrospective study

https://doi.org/10.22328/2413-5747-2024-10-3-88-93

Abstract

OBJECTIVE. Evaluate the possibility of using neural networks in the medical and psychological support of military personnel.


MATERIALS AND METHODS. There was screening of 1822 cadets of the Navy Military Training and Research Centre “the Naval Academy named after Admiral of the Fleet of the Soviet Union N.G. Kuznetsov”, aged 18-27. Subjects were divided into 2 groups: “Norm” (n = 1507) and “Maladaptation” (n = 315). The screening was carried out using multidimensional personality questionnaire “Adaptability” and methods of intellectual development diagnosis КР-3-85. Statistical processing was performed using Stat Soft Statistica 10.0 software package. Check for rate normality was carried out via the Kolmogorov-Smirnov test. Comparative analysis of indicators with normal distribution was evaluated using Student’s t-test. Проанализирована Spearman’s rank correlation was analyzed in order to check the data for multicollinearity. Mathematical modeling was conducted with the use of neural networks. The model efficacy was assessed by the level of sensitivity and specificity.


RESULTS. Cadets with maladaptation are characterized by lower rates of the personal adaptation potential, moral normativity and test results: memory for figures, pattern determination. Neural network is a powerful instrument for systematization, making it possible to reliably classify cadets with socio-psychological maladaptation. Yet, neural network is characterized by high specificity.


DISCUSSION. The obtained results support the conclusions of other scientists that neural networks are able to classify various states with high accuracy. A significant shortcoming in neural network is incomplete information on identified connections and patterns from researchers’ side.


CONCLUSION. The use of neural networks will enhance the efficiency of measures to provide medical and psychological support for cadets.

About the Author

Alexey N. Yatmanov
Military Medical Academy
Russian Federation

Cand. of Sci. (Med.), Doctoral Student



References

1. Дегтяренко К. А. Искусственный интеллект в медицине. Обзор 21 международной конференции по искусственному интеллекту в медицине // Азия, Америка и Африка: история и современность. 2023. Т. 2, № 3 (4). С. 27–42 [Degtyarenko K. A. Artificial intelligence in medicine. Review of the 21st international conference on artificial intelligence in medicine. Asia, America and Africa: history and modernity, 2023, T. 2, No. 3 (4), pp. 27–42 (In Russ.)].

2. Мосягин И. Г. Морская медицина // Реестр новых научных направлений. М.: 2018. С. 162–163 [Mosyagin I. G. Marine medicine. Register of new scientific directions. Moscow: 2018, pp. 162–163 (In Russ.)].

3. Лысова М. Е., Кузнецов М. Е. Нейронные сети в медицине. Автоматизация при помощи искусственного интеллекта // Достижения науки и технологий. Красноярск. 2023. С. 581–586 [Lysova M. E., Kuznetsov M. E. Neural networks in medicine. Automation using artificial intelligence. Achievements of science and technology. Krasnoyarsk, 2023, pp. 581–586 (In Russ.)].

4. Мельникова Е. В. Глубокое машинное обучение в оптимизации научно-исследовательской деятельности // Научно-техническая информация. Серия 1: Организация и методика информационной работы. 2023. № 2. С. 8–13 [Melnikova E. V. Deep machine learning in optimization of research activities. Scientific and technical information. Series 1: Organization and methodology of information work, 2023, No. 2, pp. 8–13 (In Russ.)].

5. Закревский Ю. Н., Балахнов Д. О., Лемешко П. Н., Иваницкая О. А., Михайлова Е. В. Алгоритм диагностики и лечения хронической крапивницы у военнослужащих различных категорий // Военно-медицинский журнал. 2022. Т. 343, № 1. С. 63–66 [Zakrevsky Yu. N., Balakhnov D. O., Lemeshko P. N., Ivanitskaya O. A., Mikhailova E. V. Algorithm for the diagnosis and treatment of chronic urticaria in military personnel of various categories. Military Medical Journal. 2022, T. 343, No. 1, P. 63–66 (In Russ.)].

6. Закревский Ю. Н., Архангельский Д. А., Балахнов Д. О., Лемешко П. Н. Алгоритм диагностики бронхиальной астмы у граждан призывного возраста // Военно-медицинский журнал. 2019. Т. 340, № 3. С. 36–43 [Zakrevsky Yu. N., Arkhangelsky D. A., Balakhnov D. O., Lemeshko P. N. Algorithm for diagnosing bronchial asthma in citizens of military age. Military Medical Journal, 2019, T. 340, No. 3, P. 36–43 (In Russ.)].

7. Мосягин И. Г., Воронов В. В., Кузьменко А. В., Литвяков А. П. Концептуальные основы создания автоматизированной системы управления рисками здоровью членов экипажей проектируемых кораблей ВМФ // Морской сборник. 2021. № 7 (2092). С. 74–77 [Mosyagin I.G., Voronov V.V., Kuzmenko A.V., Litvyakov A.P. Conceptual basis for creating an automated health risk management system for crew members of designed Navy ships. Marine collection, 2021, No. 7 (2092), P. 74–77 (In Russ.)].

8. Мясников А. А., Зверев Д. П. Перспективы развития водолазной медицины в Вооруженных Силах Российской Федерации // 3-й Азиатско-тихоокеанский конгресс по военной медицине. Материалы конгресса. 2016. С. 42 [Myasnikov A. A., Zverev D. P. Prospects for the development of diving medicine in the Armed Forces of the Russian Federation. 3rd Asian-Pacific Congress on Military Medicine. Congress materials. 2016, P. 42 (In Russ.)].

9. Щукина Н. А. Формирование внешнего критерия для машинного обучения на основе медико-биологических данных // Машинное обучение в исследованиях медико-биологических и социально-экономических данных. Санкт-Петербург. 2020. С. 236–282 [Shchukina N. A. Formation of an external criterion for machine learning based on medical and biological data. Machine learning in the research of medical, biological and socio-economic data. Saint Petersburg, 2020, P. 236–282 (In Russ.)].

10. Баурова Н. Н., Дьяконов И. Ф., Лыткин В. М., Марченко А. А., Овчинников Б. В., Шамрей В. К. Медицинская психология. Санкт-Петербург. 2019. 223 с. [Baurova N. N., Dyakonov I. F., Lytkin V. M., Marchenko A. A., Ovchinnikov B. V., Shamrey V. K. Medical psychology. St. Petersburg, 2019, 223 p. (In Russ.)].

11. Ясницкий Л. Н. Интеллектуальные системы. М.: Лаборатория знаний, 2016. 221 с. [Yasnitsky L. N. Intelligent systems. Moscow: Knowledge Laboratory, 2016, 221 p. (In Russ.)].

12. Корзунин В. А., Церфус Д. Н. Актуальные вопросы психофизиологического сопровождения адаптации обучающихся к условиям образовательной среды в вузах силовых ведомств // Проблемы управления рисками в техносфере. 2015. № 3 (35). С. 149–156 [Korzunin V. A., Tserfus D. N. Current issues of psychophysiological support for adaptation of students to the conditions of the educational environment in universities of law enforcement agencies. Problems of risk management in the technosphere, 2015, No. 3 (35), P. 149–156 (In Russ.)].

13. Баурова Н. Н., Рудой И. С. Прогностическая модель развития невротических расстройств у курсантов военных вузов // Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2012. № 3. С. 76–78 [Baurova N. N., Rudoy I. S. Predictive model of the development of neurotic disorders among cadets of military universities. Medical-biological and social-psychological problems of safety in emergency situations, 2012, No. 3, P. 76–78 (In Russ.)].

14. Смирнова М. В. Компьютерная психологическая диагностика при оценке управленческого потенциала сотрудников организаций // Вопросы психологии экстремальных ситуаций. 2018. № 4. С. 37–43 [Smirnova M. V. Computer psychological diagnostics in assessing the management potential of employees of organizations. Questions of psychology of extreme situations. 2018, No. 4, P. 37–43 (In Russ.)].


Review

For citations:


Yatmanov A.N. Use of neural networks for medical and psychological support of military personnel: retrospective study. Marine Medicine. 2024;10(3):88-93. https://doi.org/10.22328/2413-5747-2024-10-3-88-93

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-5747 (Print)
ISSN 2587-7828 (Online)