Preview

Model of zone formation of radioactive contamination: predictive study

https://doi.org/10.22328/2413-5747-2024-10-3-80-87

Abstract

INTRODUCTION. In the face of modern threats and hazards health remains the most important value for people. Health is the basis of human potential, the key to prosperity and sustainable development of the society. Nowadays increasing threats of global terrorism are one of external hazards, which have modern models of weapons, including the ones with radioactive material in their arsenal. The article describes the process of forming the zone of radioactive contamination (RC) of the terrain in case of radiological weapon use that obviously impacts on public health in the affected area.


OBJECTIVE. Develop the model for forming the zone of RC in case of radiological weapon use or emergency situation, associated with violation of the rules for nuclear or radiation safety, including radiation hazardous facilities of the Russian Federation Navy.


MATERIALS AND METHODS. The method is based on creating a two-stage model of RC of the terrain. Mathematical calculations have resulted in a model allowing to determine spatial characteristics of radiation dose rate and to predict the consequences of radiation exposure to objects.


RESULTS. The model makes it possible to evaluate the extent of radiation ionizing effect on human health in the zone of RC.


DISCUSSION. The proposed model for forming the zone of RC, unlike others, allows to determine spatial characteristics of dose rate distribution in case of radioactive substance use for terroristic purposes.


CONCLUSION. The mathematical model for formind the zone of RC in case of radiological weapon use or emergency situations of technogenic nature as well as acts of sabotage at radiation-hazardous facilities of the Navy allows to determine spatial characteristics of radiation dose rate distribution and to predict the consequences of radiation exposure to objects and primarily to the population in radioactively contaminated areas.

About the Authors

Aleksej V. Vilkov
Military Space Academy named after A. F. Mozhaisky
Russian Federation

Cand. of Sci. (Military), lecturer



Jurij P. Kuz’min
Military Space Academy named after A. F. Mozhaisky
Russian Federation

Cand. of Sci. (Tech.), lecturer



Mihail J. Lebedev
Military Space Academy named after A. F. Mozhaisky
Russian Federation

Cand. of Sci. (Tech.), lecturer



Evgeniy V. Makeykin
27th Scientific Center of the Ministry of Defense of the Russian Federation
Russian Federation

Cand. of Sci. (Military), Senior Researcher



Aleksandr F. Najdanov
Military Space Academy named after A. F. Mozhaisky
Russian Federation

Cand. of Sci. (Tech.), Associate Professor



Igor’ V. Svitnev
Military Space Academy named after A. F. Mozhaisky
Russian Federation

Cand. of Sci. (Military), Associate Professor



Elena A. Haritonova
Saint Petersburg State University
Russian Federation

Cand. of Sci. (Med.), Associate Professor, Head of Department of Fundamentals of Medical and Special Knowledge



References

1. Кулганов В.А., Матюшенок К.В., Харитонова Е.А. Оценка поражающего действия ударной волны на человека и животных по показателям повреждаемости систем организма // Экология и развитие общества. 2022. № 1-2 (38), с. 74-83. [Kulganov V.A., Matyushenok K.V., Kharitonova E.A. Assessment of the damaging effect of a shock wave on humans and animals by indicators of damage to body systems. Ecology and social development, 2022, № 1-2 (38), pp. 74-83].

2. Калинкин Д.Е., Тахауов Р.М., Карпов А.Б., Самойлова Ю.А., Плаксин М.Б., Семенова Ю.В., Тахауов А.Р., Кириакиди Е.Н., Тахауова Л.Р. Факторы влияния на состояние здоровья взрослого населения, проживающего в зоне действия предприятия атомной индустрии. // Медицинская радиология и радиационная безопасность. 2020. Т. 65 № 4. С. 5-11. [Kalinkin D.E., Takhauov R.M., Karpov A.V., Samoilova Yu.A., Plaksin M.B., Semenova Yu.V., Takhaouv A.R., Kiriakidi E.N., Takhauova L.R. Factors Infliencing the Health Condition of the Adult population Residing in the Activity Area of Atomic Industry Enterprise // Medical Radiology and Radiation Safety. 2020. Vol. 65. № 4. P. 5-11.] DOI: 10.12737/1024-6177-2020-65-4-5-11.

3. Петрова В.В., Шулепов П.А., Симагова Т.Д., Петров А.А. Разработка концепции цифрового двойника работника радиационно- и ядерно-опасного предприятия и производства // Медицинская радиология и радиационная безопасность. 2023. Т. 68. № 1. С. 19–24. [Petrova V.V., Shulepov P.A., Simagova T.D., Petrov A.A. The Concept if the digital Twin of the Radiation and Nuclear Facilities’ Workers // Medical Radiology and Radiation Safety. 2023. Vol. 68. № 4. P. 19-24.] DOI: 10.33266/1024-6177-2023-68-1-19-24

4. Вооруженные Силы в Сирии. Научно-популярный труд. Специальная операция. Вооружение и военная техника. – М.: Красная Звезда, 2019. – С. 384. [The Armed Forces in Syria. Popular science work. A special operation. Armament and military equipment. – Moscow: Krasnaya Zvezda, 2019. – pp.384].

5. Соколов Д.А., Косырев С.В., Кислицына И.А. Методика расчета содержания загрязнителя на подстилающей поверхности с заданной вероятностью его достоверного определения // Экология и развитие общества. – СПб.: МАНЭБ, 2021. – № 1(35). – С. 31–38. [Sokolov D.A., Kosyrev S.V., Kislitsina I.A. Methodology for calculating the pollutant content on the underlying surface with a given probability of its reliable determination // Ecology and social development, 2022, № 1-2 (38), pp. 74-83].

6. Кашин А.С. Методы радиологического контроля объектов ветеринарного надзора, вычисления поглощенных доз облучения при поступлении радиоизотопов в организм продуктивных животных // Вестник КрасГАУ. 2019. № 7, с. 137-142.

7. Долгих А. П. Радиобиологическая модель расчёта вероятности гибели клеток млекопитающих при облучении их ионизирующим излучением с разной линейной потерей энергии / А. П. Долгих, Т. И. Павлик // Радиация и риск (Бюллетень Национального радиационно-эпидемиологического регистра). 2022. Т. 31, № 2. С. 97-110. [Dolgikh A. P. Radiobiological model for calculating the probability of mammalian cell death when irradiated with ionizing radiation with different linear energy loss / A. P. Dolgikh, T. I. Pavlik // Radiation and risk (Bulletin of the National Radiation and Epidemiological Register). 2022. Vol. 31, No. 2. pp. 97-110]. DOI 10.21870/0131-3878-2022-31-2-97-110.

8. Петин В. Г. Комбинированное биологическое действие ионизирующих излучений и других вредных факторов окружающей среды (научный обзор) / В. Г. Петин, И. П. Дергачева, Г. П. Жураковская // Радиация и риск (Бюллетень Национального радиационно-эпидемиологического регистра). 2001. № 12. С. 117-134. [Petin V. G. Combined biological effect of ionizing radiation and other harmful environmental factors (scientific review) / V. G. Petin, I. P. Dergacheva, G. P. Zhurakovskaya // Radiation and risk (Bulletin of the National Radiation and Epidemiological Register). 2001. No. 12. pp. 117-134.]

9. Кулганов, В. А. К вопросу оценки поражающего воздействия ионизирующего излучения на человека и защиты от него / В. А. Кулганов, С. В. Косырев, К. С. Васнецов // Технологии гражданской безопасности. 2023. Т. 20, № 1(75). С. 83-89. [Kulganov, V. A. On the issue of assessing the damaging effects of ionizing radiation on humans and protection from it / V. A. Kulganov, S. V. Kosyrev, K. S. Vasnetsov // Technologies of civil safety. - 2023. – Vol. 20, No. 1(75). – pp. 83-89.]

10. Галеева Г. З Воздействие ионизирующего излучения на человека и орган зрения / Г. З. Галеева, С. А. Рыжкин, С. Ю. Сергеева // Практическая медицина. 2016. № 7(99). С. 37-41. [Galeeva, G. Z. The effect of ionizing radiation on humans and the organ of vision / G. Z. Galieva, S. A. Ryzhkin, S. Yu. Sergeeva // Practical medicine. – 2016. – № 7(99). – Pp. 37-41]

11. Крышев, И. И. Радиационная безопасность окружающей среды. Обзор / И. И. Крышев, Т. Г. Сазыкина // Радиация и риск (Бюллетень Национального радиационно-эпидемиологического регистра). 2018. Т. 27, № 3. С. 113-131. [Kryshev, I. I. Radiation safety of the environment. Review / I. I. Kryshev, T. G. Sazykina // Radiation and risk (Bulletin of the National Radiation and Epidemiological Register). 2018. vol. 27, No. 3. pp. 113-131. DOI 10.21870/0131-3878-2018-27-3-113-131.


Supplementary files

1. Fig. 1. Radiation intensity at a point located outside the axis of symmetry
Subject
Type author.submit.suppFile.figureResearchResults
View (161KB)    
Indexing metadata ▾
2. Fig. 2. Geometric model of the formation of radioactive contamination
Subject
Type author.submit.suppFile.figureResearchResults
View (153KB)    
Indexing metadata ▾
3. Fig. 3. Dependence of dose rate distribution on distance. A – quantity of RS 0.1 kg; Б – quantity of radioactive substances 0.2 kg; B – quantity of RS 0.3 kg
Subject
Type author.submit.suppFile.figureResearchResults
View (408KB)    
Indexing metadata ▾

Review

For citations:


Vilkov A.V., Kuz’min J.P., Lebedev M.J., Makeykin E.V., Najdanov A.F., Svitnev I.V., Haritonova E.A. Model of zone formation of radioactive contamination: predictive study. Marine Medicine. 2024;10(3):80-87. https://doi.org/10.22328/2413-5747-2024-10-3-80-87

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-5747 (Print)
ISSN 2587-7828 (Online)