Application of Stellar invasive telemetry system in the study of liquid breathing technology in hyperbaric stand
https://doi.org/10.22328/2413-5747-2023-9-2-90-97
EDN: QSSLOE
Abstract
OBJECTIVE: To study specific features of the invasive telemetry system Stellar in implementing liquid breathing technology under excessive water pressure.
MATERIALS AND METHODS: The study of liquid breathing in hyperbariс conditions was carried out on the hyperbaric stand, providing a simulated immersion/emersion of a laboratory animal up to a depth of 1500 m. Dynamic monitoring of key indicators of the animal’s body functional systems was performed with the patient monitor Dixon Storm 5770 Vet. During bench tests, the frequency of the laboratory animal’s independent breathing, the core body temperature (Тº С), heart rate (HR), electrocardiopraphic research data through invasive telemetry Stellar were recorded in real time.
RESULTS: Before the bench tests the invasive telemetry system Stellar was implanted in the body of the laboratory animal. The process of simulated immersion/emersion of laboratory animals on the hyperbaric stand was 390 sec. at a total immersion time 570 sec. During the bench tests the laboratory animals experienced hypothermia with a rectal temperature 32,1 º С, their breathing after decompression was registered at the level of 28 breaths /min. Bradycardia was recorded at a level of 66-70 beats/min after extracting the laboratory animal from the hyperbaric stand. Under decompression the vast majority of the laboratory animals showed full restoration of the sinus rhythm. At the same time, restoration of the rhythm was not recorded with 2 laboratory animals with ST-segment elevation and depression, provoked by myocardial hypoxia.
DISCUSSION: Under different modes of barometric pressure during liquid breathing on the hyperbaric stand the laboratory animals experienced hypothermia, accompanied by transient ischemic changes in the myocardium, determined by immersion length and depth. Liquid respiratory desaturation under ultra-fast decompression revealed inversely proportional dependence of external respiration function on the basic characteristics of the external environment.
CONCLUSION: The expedience of applying the test hyperbaric stand, which allows to simulate high hydrostatic pressure for imitating immersion/emersion of laboratory animals when studying liquid breathing technology. The bench tests attested indispensability of applying the invasive telemetry system Stellar for monitoring functional parameters of laboratory animals, measuring peculiarities of body’s adaptation in extreme water conditions. Liquid respiratory desaturation under ultra-fast decompression revealed inversely proportional dependence of external respiration function on the basic characteristics of the external environment. Systematic empirical data indicate potential benefit from the invasive telemetry system Stellar in studying liquid breathing under the conditions of hyperbaric stand.
About the Authors
G. N. SobyaninaRussian Federation
Galina N. Sobyanina – Cand. of Sci. (Med.), Associate Professor, Leading Researcher of the Research Laboratory “Experimental Life Support Systems for Biological Objects”
299053, Sevastopol, st. Universitetskaya, 33
S. Yu. Malkov
Russian Federation
Sergey Yu. Malkov – diving medicine doctor (special physiologist), head of the biomedical group of the research laboratory “Experimental life support systems for biological objects”
299053, Sevastopol, st. University, 33
M. I. Pavlov
Russian Federation
Mikhail I. Pavlov – engineer of the 2nd category of the research laboratory Experimental life support systems for biological objects
299053, Sevastopol, st. Universitetskaya, 33
References
1. Korepanov A.L. Liquid breathing. Partial liquid ventilation of the lungs (first message). Bulletin of Physiotherapy and Balneology, 2018, Vol. 24, No. 2, pp. 62–70 (In Russ.)
2. Korepanov A.L., Shunevych O.B., Vasilenko I.Yu. Liquid breathing. Total liquid ventilation of the lungs (second message). Bulletin of Physiotherapy and Balneology, 2018, Vol. 24, No. 4, pp. 86–93 (In Russ.)
3. Lee W.L., Slutsky A.S. Acute Hypoxemic Respiratory Failure and ARDS Murray and Nadel’s Textbook of Respiratory Medicine (Sixth Edition). 2016, Vol. 2, pp. 1740–1760.e7. doi: 10.1016/B978-1-4557-3383-5.00100-7
4. Hirschl R.B., Croce M., Gore D., et al. Prospective, randomized, controlled pilot study of partial liquid ventilation in adult acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002, Vol. 165, pp. 781.
5. Suman Sarkar, Anil Paswan, Prakas S. Liquid ventilation. Anesth Essays Res, 2014, Vol. 8, № 3, pp. 277–282. doi: 10.4103/0259-1162.143109
6. Moroz V.V., Vlasenko A.V., Zaks I. O. Liquid ventilation of the lungs, its possibilities and prospects (current state of the issue), Anesthesiology and resuscitation, 2001, N 6, pp. 66–73 (In Russ.)
7. Moroz V.V., Ostapchenko D.A., Vlasenko A.V., Osipov P.Yu., Gerasimov L.V. Endotracheal use of perftoran under mechanical ventilation in patients with acute respiratory distress syndrome. General resuscitation, 2005, Vol. 2, pp. 5–11 (In Russ.)
8. Poptsov V.N., Balandyuk A.E. The first clinical experience of using partial liquid ventilation based on endobronchial administration of perftoran in the complex therapy of respiratory distress syndrome. Russian Biomedical journal Medline.ru, 2004, Vol. 5, pp. 173–174 (In Russ.)
9. Barinov V.A., Bonitenko E.Yu., Belyakova N.A., Rodchenkova P.V., Tonshin A.A., Panfilov A.V., Bala A.M., Golovko A.I., Shilov V.V. The use of perfluorocarbon fluids in the treatment of respiratory distress syndrome (literature review), Russian Biomedical Journal Medline.ru. 2022, Vol. 23, No. 1, pp. 515–555 (In Russ.)
10. Kotsky M.A., Bonitenko E.Yu., Makarov A.F. Kanibolotsky A.A., Kochoyan A.L., Litvinov N.A. About the possibility of using the subsistence minimum to prevent the development of decompression disorders. Occupational medicine and industrial ecology, 2022, Vol. 62, No. 2, 91–100. doi: 10.31089/1026-9428-2022-62-2-91-100R (In Russ.)
11. Kotsky M.A., Bonitenko E.Yu., Tonshin A.A., Rodchenkova P.V., Muravskaya M.P., Tkachuk Yu.V., Kanibolotsky A.A., Kochoyan A.L. Liquid respiratory desaturation — a new method of prevention of decompression sickness. Occupational medicine and industrial ecology, 2023, Vol. 63, No. 1, pp. 4–17. doi: 10.31089/1026-9428-2023-63-1-4-17 (In Russ.)]
Review
For citations:
Sobyanina G.N., Malkov S.Yu., Pavlov M.I. Application of Stellar invasive telemetry system in the study of liquid breathing technology in hyperbaric stand. Marine Medicine. 2023;9(2):90-97. (In Russ.) https://doi.org/10.22328/2413-5747-2023-9-2-90-97. EDN: QSSLOE