Preview

Marine hydrobionts are a perspective source of means for the prevention of radiation-induced disturbances

https://doi.org/10.22328/2413-5747-2023-9-2-18-31

EDN: DLIJGU

Abstract

INTRODUCTION: Today unstable world environment increases the threat of technogenic accidents at nuclear power facilities that requires an active search for radioprotectors that meet safety requirements, efficiency and reliability of their operation when exposed to the body of ionizing radiation. Over the past decades scientists of this area have turned their attention to biologically active substances (BAS) from marine hydrobiotics, representatives of which are triterpene glycosides (holothuria) and sulfated polysaccharides (brown seaweed fucoidan).
OBJECTIVE: Study and synthesis of domestic and international experience, resulting from ongoing research in Russia and abroad; search for ways to prevent, minimize negative postradiation effects and correct these damages using biologically active compounds, derived from marine hydrobionts.
MATERIALS AND METHODS: The study used materials of domestic and foreign authors, covering the historical period from building an atomic weapon to modern times, characterized by the threat of using “dirty bombs”, terrorist attacks on peaceful nuclear power facilities (NPF). Search terms include international and Russian database (PubMed, eLIBRARY.RU) and also search queries (see keywords).
RESULTS: It was found that polysaccharides and polyphenolic compounds occupy a leading place in many publications due to their low toxicity compared to other natural and commercial radioprotective agents. The study assesses the relationship between key radioprotective properties (antioxidant, antiradical, anti-inflammatory, anti-stress) and BAS radioprotective activity. It outlines action mechanisms of different radioprotectors.
DISCUSSION: To date, the issue of practical pharmacology remains relevant – creating effective drugs of radiation protection. In crisis (emergency) conditions radioprotection use and support of body hematopoietic function are the crucial factor in the outcome of the body struggling for survival. However, in addition to emergency a new purpose of radioprotectors has been often mentioned in the scientific community in recent times – as means of lesion prevention, caused by low-dose and chronic exposure. The results of scientific experiments around the world demonstrates the consensus view within Russian and foreign scientists regarding a positive radioprotective effect of different BAS groups from marine hydrobionts (triterpene glycosides, sulfated polysaccharides, chitosan, etc.). However, there is a discussion of divergent scientific approaches to assessing the impact of chronic and low-dose exposure (“radiation hormesis” and “non-threshold concept of radiation effect”) on the body. The views on a single problem, proposed for discussion, suggest the relevance of further scientific research for ways to overcome the negative impact of radiation-induced damage effects to biological organisms.|
CONCLUSION: Marine hydrobionts can be considered as a highly promising source of biologically active substances for creating pharmaceutical drugs. Diverse spectrum of their biological activity causes scientific interest around the world. Domestic scientists pay close attention to the subject due to several reasons: favorable geographical location (the Pacific Ocean, contiguous to the borders of the Far East and Primorsky Krai), cost-effectiveness of raw material extraction and biological substance production, fast natural reproducibility of the resource base as well as advantages of biological properties in the resulting material over foreign analogues.

About the Authors

S. F. Polovov
Far Eastern State Research and Testing Institute of Military Medicine; Far Eastern Federal University (FEFU), School of Medicine, Department of Clinical Medicine
Russian Federation

Sergey F. Polovov – Cand. of Sci. (Med.), Associate Professor, Head of the 2nd Research and Testing Department

690080, Russia, Vladivostok, Borisenko str., 100



L. A. Ivanushko
Far Eastern State Research and Testing Institute of Military Medicine
Russian Federation

Lyudmila A. Ivanushko – Cand. of Sci. (Med.), Researcher of the 1st Research and Testing Department

690080, Russia, Vladivostok, Borisenko str., 100



T. P. Smolina
Far Eastern State Research and Testing Institute of Military Medicine
Russian Federation

Tatyana P. Smolina – Cand. of Sci. (Biol.), Senior  Researcher of the 2nd Research and Testing Department

690080, Russia, Vladivostok, Borisenko str.,100



References

1. Polovov S.F., Kuzmin A.P. Clinical aspects of the impact of low doses of ionizing radiation on humans. Health. Medical ecology. The science, 2007, Vol. 31, No. 1, pp. 10–11 (In Russ.)

2. Arutyunyan R.V., Bolshov L.A., Borovoy A.A., Velikhov E.P. Systematic analysis of the causes and consequences of the accident at the Fukushima-1 nuclear power plant. Institute of Problems of Safe Development of Nuclear Power Engineering, Russian Academy of Sciences, Moscow: IBRAE RAN, 2018, 408 p. ISBN 978-5-9907220-5-7 (In Russ.)

3. Golikov V.Yu. Dosimetry of external exposure of the population: comparison of accidents at the Chernobyl nuclear power plant and nuclear power plant “Fukushima-1”. Radiation hygiene, 2020, Vol. 13, No. 1, pp. 27–37. doi: 10.21514/1998-426X-2020-13-1-27-37 (In Russ.)

4. Akleev A.V., Degteva M.O., Krestinina L.Yu. Comparative analysis of the medical and dosimetric consequences of the 1957 accident and pollution of the Techa River in the context of the effectiveness of protective measures. Radiation Hygiene, 2020, Vol. 13, No. 1, pp. 16–26 (In Russ.). https://doi.org/:10.21514/1998-426X-2020-13-1-16-26

5. Osif B.A., Baratta A.J., Conkling T.W. TMI 25 Years Later: The Three Mile Island Nuclear Power Plant Accident and Its Impact: [англ.]. University Park, Pennsylvania: Pennsylvania State University Press. 2004, 195 p. ISBN 0-271-02383-X (In Russ.)

6. Samuel J. Walker. Three Mile Island: A Nuclear Crisis in Historical Perspective. Berkeley: University of California Press, 2004, 317 p. (In Russ.)

7. Zhupansky O.Ya. Assessment of the radiation situation in the area of responsibility of the Pacific Fleet. Zdorovye. Medical ecology. The science, 2008, Vol. 35, No. 4, pp. 25 (In Russ.)

8. Zvyagintseva T.N., Usoltseva R.V., Shevchenko N.M., Surits V.V., Imbs T.I., Malyarenko O.S., Ermakova S.P., Besednova N.N., Ivanushko L.A. Structural diversity of fucoidans and their radioprotective effect. Carbohydrate Polymers, 2021, Vol. 273, pp. 118551. doi: 10.1016/j.carbpol.2021.118551.

9. Wang W., Xue C, Mao X. Radioprotective effects and mechanisms of animal, plant and microbial polysaccharides. Int J Biol Macromol., 2020, Vol. 153, pp. 373–384. doi: 10.1016/j.ijbiomac.2020.02.203. Epub 2020 Feb 19.

10. Abraham R.E., Alghazwi M., Liang Q., Zhang W. Advances on marine-derived natural radioprotection compounds: historic development and future perspective. Mar Life Sci Technol., 2021, Vol. 4, № 3, pp. 474–487. doi: 10.1007/s42995-021-00095-x.

11. Riley P.A. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol., 1994, Vol. 65, pp. 27–33.

12. Pastina B., LaVerne J.A. Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. J Phys Chem A., 2001, Vol. 105, pp. 9316–9322.

13. Hosseinimehr S.J. Trends in the development of radioprotective agents. Drug Discov Today, 2007, Vol. 4, No. 12, pp. 794–805. doi: 10.1016/j.drudis.2007.07.017

14. Santini V., Giles F.J. The potential of amifostine: from cytoprotectant to therapeutic agent. Haematologica, 1999, Vol. 3, No. 84, pp. 1035–1042.

15. Rades D., Fehlauer F., Bajrovic A., Mahlmann B., Richter E., Alberti W. Serious adverse effects of amifostine during radiotherapy in head and neck cancer patients. Radiother Oncol., 2004, Vol. 6, No. 70, pp. 261–264. doi: 10.1016/j.radonc.2003.10.005

16. Arora R., Gupta D., Chawla R., Sagar R., Sharma A., Kumar R., Prasad J., Singh S., Samanta N., Sharma R.K. Radioprotection by plant products: present status and future prospects. Phytother Res., 2005, Vol. 5, No. 19, pp. 1–22. doi: 10.1002/ptr.1605

17. Kim H.J., Kim M.H., Byon Y.Y., Park J.W., Jee Y., Joo H.G. Radioprotective effects of an acidic polysaccharide of Panax ginseng on bone marrow cells. J Vet Sci., 2007, Vol. 14, No. 8, pp. 39–44. doi: 10.4142/jvs.2007.8.1.39

18. Wang Z.W., Zhou J.M., Huang Z.S., Yang A.P., Liu Z.C., Xia Y.F., Zeng Y.X., Zhu X.F. Aloe polysaccharides mediated radioprotective effect through the inhibition of apoptosis. J Radiat Res., 2004, Vol. 8, No. 45, pp. 447–454. doi: 10.1269/jrr.45.447

19. Silva T.R., Duarte A.W.F., Passarini M.R.Z., Ruiz A.L.T.G., Franco C.H., Moraes C.B., De Melo I.S., Rodrigues R.A., Fantinatti-Garboggini F., Oliveira V.M. Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biol., 2018, Vol. 41, pp. 1505–1519. doi: 10.1007/s00300-018-2300-y

20. Silva TR, Canela-Garayoa R, Eras J, Rodrigues MVN, dos Santos FN, Eberlin MN, Neri-Numa IA, Pastore GM, Tavares RSN, Debonsi HM, Cordeiro LRG, Rosa LH, Oliveira VM. 2019. Pigments in an iridescent bacterium, Cellulophaga fucicola, isolated from Antarctica. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2019, Vol. 112, pp. 479-490 doi: 10.1007/s10482-018-1179-521.

21. Anisimov M.M. Triterpene glycosides and structural and functional properties of membranes. Biol. Sciences, 1987, No. 10, pp. 49–63 (In Russ.)

22. Fedorov S.N., Dyshlovoy S.A., Kuzmich A.S., Shubina L.K., Avilov S.A., Silchenko A.S., Bode A.M., Dong Z., Stonik V.A. In vitro anticancer activities of some triterpene glycosides from holothurians of Cucumariidae, Stichopodidae, Psolidae, Holothuriidae and Synaptidae families. Nat. Prod. Commun., 2016, Vol. 11, No. 9, pp. 1239–1242.

23. Janakiram A.M., Bryant T., Lightfoot S., Collin P.D., Steele V.E., Rao C.V. Improved innate immune responses by Frondanol A5, a sea cucumber extract, prevent intestinal tumorigenesis. Cancer Prev. Res., 2015, Vol. 8, pp. 327–337.

24. Menchinskaya E.S., Pislyagin E.A., Kovalchyk S.N., Davydova V.N., Silchenko A.S., Avilov S.A., Kalinin V.I., Aminin D.L. Antitumor activity of cucumarioside A2-2. Chemotherapy, 2013, Vol. 59, pp. 181–191.

25. Ale M., Maruyama H., Tamauchi H., Mikkelsen J., Meyer A. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J Biol Macromol, 2011, Vol. 49, No. 3, pp. 331–336.

26. Nigrelli R.F., Jakowska S. Effects of holothurin, a steroid saponin from the Bahamian sea cucumber (Actinopyga agassizi), on various biological systems. Annals of the New York Academy of Sciences, 1960, Vol. 90, pp. 884–892. doi: 10.1111/j.1749-6632.1960.tb26431.x.

27. Lasley B.J., Nigrelli R.F. The effects of crude holothurin on leucocyte phagocytosis. Toxicon, 1970, Vol. 8, pp. 301–306. doi: 10.1016/0041-0101(70)90007-3

28. Sedov A.M., Apollonin A.V., Sevastyanova E.K., Alekseeva I.A., Batrakov S.G., Sakandelidze O.G., Likhoded V.G., Stonik V.A., Avilov S.A., Kupera E.V. Stimulation of nonspecific antibacterial resistance of mice to opportunistic gram-negative microorganisms by triterpene glycosides of holothurians. Antibiotics and Chemotherapy, 1990, Vol. 35, No. 1, pp. 23–26 (In Russ.)

29. Sedov A.M., Elkina S.I., Sergeev V.V., Kalina N.G., Sakandelidze O.G., Batrakov S.G., Girshovich E.S. The ability of triterpene glycosides from holothurians to stimulate antibacterial resistance in the model of experimental salmonellosis in mice. Journal of Microbiology, Epidemiology and Immunobiology, 1984, No. 5, pp. 55–58 (In Russ.)

30. Sedov A.M., Shepeleva I.B., Zakharova N.S., Sakandelidze O.G., Sergeev V.V., Moshiashvili I.Ya. Influence of cucumarioside (triterpene glycoside from holothurians Cucumaria japonica) on the development of the immune response of mice to corpuscular vaccine. Journal of Microbiology, Epidemiology and Immunobiology, 1984, No. 9, pp. 100–104 (In Russ.)

31. Chludil H.D., Murray A.P., Seldes A.M., Maier M.S. Biologically active triterpene glycosides from sea cucumbers. Studies in Natural Products Chemistry. Vol. 28, Part I, Ed. Atta-ur-Rahman. Elsevier Science B.V. 2003, Vol. 28, pp. 587–616.

32. Ngo D-H., Kim S-K. Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol., 2013, Vol. 62, pp. 70–75.

33. Kandasamy S., Khan W., Kulshreshtha G., Evans F., Critchley AT., Fitton J., Stringer DN., Gardiner V-A., Prithiviraj B. The fucose containing polymer (FCP) rich fraction of Ascophyllum nodosum (L.) Le Jol. protects Caenorhabditis elegans against Pseudomonas aeruginosa by triggering innate immune signaling pathways and suppression of pathogen virulence factors. Algae, 2015, Vol. 30, pp. 147–161.

34. Usov A.I., Zelinsky N.D. Chemical structures of algal polysaccharides. In: Domínguez H, editor Functional Ingredients from Algae for Foods and Nutraceuticals. Woodhead Publishing, Cambridge, 2013, pp. 23–86.

35. Abad L.V., Kudo H., Saiki S., Nagasawa N., Tamada M., Katsumura Y., Aranilla C.T., Relleve L.S., De La Rosa A.M. Radiation degradation studies of carrageenans. Carbohydr Polym., 2009, Vol. 78, pp.100–106.

36. Chertkov K.S., Gvozdeva N.I., Fedorenko B.S., Preobrazhenski Y.Y. 1986. Radioprotective and therapeutic efficacy of carrageenan during exposure to proton radiation. Kosm Biol Aviakosm Med., 1986, Vol. 20, 84–86.

37. Nagasawa N., Mitomo H., Yoshii F., Kume T. Radiation-induced degradation of sodium alginate. Polym Degrad Stab., 2000, Vol. 69, pp. 279–285.

38. Nesterenko A.V., Nesterenko V.B., Yablokov AV. Chapter IV. Radiation protection after the Chernobyl catastrophe. Ann NY Acad Sci., 2009, Vol. 1181, pp. 287–327.

39. Höllriegl V., Röhmuss M., Oeh U., Roth P. Strontium biokinetics in humans: influence of alginate on the uptake of ingested strontium. Health Phys., 2004, Vol. 86, pp. 193–196.

40. Berteau O., Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology, 2003, No. 13, pp. 29–40. doi: 10.1093/glycob/cwg058

41. Kiple K.F., Ornelas K.C. Important Vegetable Supplements. In: Beck S.V., editor. The Cambridge World History of Food. Cambridge University Press; Cambridge, UK. 2000, Vol. 1, pp. 231–249.

42. Koyanagi S., Tanigawa N., Nakagawa H., Soeda S., Shimeno H. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem Pharmacol., 2003, Vol. 65, № 2, pp. 173–179. doi: 10.1016/s0006-2952(02)01478-8

43. Ivanushko L.A., Imbs T.I. Comparative study of the cytokine-inducing properties of fucoidan from brown algae Fucus evanescens and its derivatives. Zdorovye. Medical ecology. The science, 2017, Vol. 70, No. 3, pp. 60–62 (In Russ.)

44. Kuznetsova T.A., Smolina T.P., Besednova N.N., Silchenko A.S., Imbs T.I., Ermakov S.P. Influence of sulfated polysaccharides from the brown alga Fucus evanescens and the product of their enzymatic transformation on the functional activity of innate immunity cells. Antibiotics and Chemotherapy, 2016, Vol. 61, No. 7–8, pp. 10–14 (In Russ.)

45. Shutikova A.L., Ivanushko L.A., Malyarenko O.S., Ermakova S.P. Influence of fucoidan on hematopoietic parameters in irradiated mice. Health. Medical ecology. The science, 2017, Vol. 70, No. 3, pp. 102–105 (In Russ.)

46. Lee J., Kim J., Moon C., Kim S., Hyun J., Park J., Shin T. Radioprotective effects of fucoidan in mice treated with total body irradiation. Phytother Res., 2008, Vol. 22, pp. 1677–1681.

47. Byon Y.Y., Kim M.H., Yoo E.S., Hwang K.K., Jee Y., Shin T., Joo H.G. Radioprotective effects of fucoidan on bone marrow cells: improvement of the cell survival and immunoreactivity. J Vet Sci., 2008, Vol. 9, No. 4, pp. 359–365. doi: 10.4142/jvs.2008.9.4.359.

48. Hsin-Hsien Yu, Edward Chengchuan KO, Chia-Lun Chang, Kevin Sheng-Po Yuan, Alexander T.H. Wu, Yan-Shen Shan, Szu-Yuan Wu. Fucoidan Inhibits Radiation-Induced Pneumonitis and Lung Fibrosis by Reducing Inflammatory Cytokine Expression in Lung Tissues. Mar Drugs. 2018, Vol. 16, № 10, P. 392. https://doi.org/:10.3390/md16100392

49. Kim A., Jin Bing S., Cho J., Ahn G., Lee J.H., Jeon Y.J., Lee BG, Jee Y. Protective effect of Hizikia fusiforme on radiationinduced damage in splenocytes. Korean J Vet Res, 2015, Vol. 55, pp. 21–30.

50. Kim J., Moon C., Kim H., Jeong J., Lee J., Kim J., Hyun J.W., Park J.W., Moon M.Y., Lee N.H., Kim S.H., Jee Y., Shin T. The radioprotective effects of the hexane and ethyl acetate extracts of Callophyllis japonica in mice that undergo whole body irradiation. J Vet Sci, 2008, Vol. 9, pp. 281–284.

51. Shin T., Kim H.C., Kim J.T., Ahn M.J., Moon C.J., Hyun J.W., Jee Y.H., Lee N.H., Park J.W. A comparative study of radioprotection with Callophyllis japonica extract and amifostine against lethal whole body gamma irradiation in mice. Orient Pharm Exp Med, 2010, Vol. 10, pp. 1–6.

52. Mazo V.K., Gmoshinskii I.V., Sokolova A.G., Zorin S.N., Danilina L.L., Litvinova A.V., Radchenko S.N. Effect of biologically active food additives containing autolysate of baker’s yeast and spirulina on intestinal permeability in an experiment. Voprosy Pitaniya, 1999, Vol. 68, pp. 17–19.

53. Gomes T., Xie L., Brede D., Lind O.C., Solhaug K.A., Salbu B., Tollefsen K.E. (2017) Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: photosynthetic performanceand ROS formation. Aquat Toxicol, 2017, Vol. 183, pp. 1–10.

54. Kang N., Lee J-H., Lee W., Ko J-Y., Kim E-A., Kim J-S., Heu M-S., Kim GH., Jeon Y-J. 2015. Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect. Environ Toxicol Pharmacol., 2015, Vol. 39, pp. 764–772.

55. Martone P.T., Estevez J.M., Lu F., Ruel K., Denny M.W., Somerville C., Ralph J. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol., 2009, Vol. 19, pp. 169–175.

56. Li Y-X., Wijesekara I., Li Y., Kim S-K. Phlorotannins as bioactive agents from brown algae. Process Biochem, 2011, Vol. 46, pp. 2219–2224.

57. Eom S.H., Moon S-Y., Lee D-S., Kim H-J., Park K., Lee E-W., Kim T.H., Chung Y-H., Lee M-S., Kim Y-M. In vitro antiviral activity of dieckol and phlorofucofuroeckol-A isolated from edible brown alga Eisenia bicyclis against murine norovirus. Algae, 2015, Vol. 30, pp. 241–246.

58. Lee S-H., Kang S-M., Sok C.H., Hong J.T., Oh J-Y., Jeon Y-J. Cellular activities and docking studies of eckol isolated from Ecklonia cava (Laminariales, Phaeophyceae) as potential tyrosinase inhibitor. Algae, 2015, Vol. 30, pp. 163–170.

59. Shin T., Ahn M., Hyun JW., Kim SH., Moon C. Antioxidant marine algae phlorotannins and radioprotection: a review of experimental evidence. Acta Histochem., 2014, Vol. 116, pp. 669–674.

60. Lee J-H., Ko J-Y., Oh J-Y., Kim E-A., Kim C-Y., Jeon Y-J. Evaluation of phlorofucofuroeckol-A isolated from Ecklonia cava (Phaeophyta) on anti-lipid peroxidation in vitro and in vivo. Algae, 2015a, Vol. 30, pp. 313–323. doi: 10.4490/algae.2015.30.4.313

61. Park E., Ahn G.-N., Lee N.H., Kim J.M., Yun J.S., Hyun J.W., Jeon Y.-J., Wie M.B., Lee Y.J., Park J.W., Jee Y. Radioprotective properties of eckol against ionizing radiation in mice. FEBS Lett., 2008, Vol. 582, pp. 925–930.

62. Heo S-J., Jeon Y-J. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B Biol, 2009, Vol. 95, pp. 101–107.

63. Venkatachalam S.R. Chattopadhyay S. Natural radioprotective agents: an overview. Curr Org Chem., 2005, № 9, pp. 389–404.

64. Fernando I.P.S., Kim M., Son K-T., Jeong Y., Jeon Y-J. Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J Med Food, 2016, Vol. 19, pp. 615–628.

65. Salgado L.T., Tomazetto R., Cinelli L.P., Farina M., Amado Filho G.M. The influence of brown algae alginates on phenolic compounds capability of ultraviolet radiation absorption in vitro. Braz J Oceanogr., 2007, Vol. 55, pp. 145–154.

66. Kamskaya V.E. Chitosan: structure, properties and use. Scientific Review. Biological Sciences, 2016, No. 6, pp. 36–42 (In Russ.)

67. Grin S.A., Albulov A.I., Frolova M.A., Samuylenko A.Ya., Grin A.V., Kovaleva E.I., Melnik N.V., Melnik R.N., Varlamov V.P., Matveeva I.N., Khakonov A.A., Shabunin S.V., Bero I.L., Kish L.K. Prospects for the use of chitosan as a radioprotector. Bulletin of the Russian agricultural science, 2019, No. 6, pp. 54–57 (In Russ.)

68. Kostryukova N.K., Karpin V.A. Biological effects of low doses of ionizing radiation. Sib. medical journnal. (Irkutsk), 2005, V. 50, No. 1, pp. 17–22 (In Russ.)

69. Laki T.D. Physiological benefits from low levels of ionizing radiation. Health Phys, 1982, Vol. 43, № 6, pp. 771–789 (In Russ.)

70. Margulis U.Ya. Non-threshold and threshold concepts radiation effects. Nuclear Encyclopedia. Moscow, 1996, pp. 384–386 (In Russ.)

71. Grabe R. The Petko effect: the effects of low-dose radiation on humans, animals, and trees. Moscow, 1994, 263 p. (In Russ.)

72. Grabe R. The effect of low doses of ionizing radiation: the Petko effect. Nuclear Encyclopedia. Moscow, 1996, pp. 387–394 (In Russ.)

73. Slozhenikina L.V., Makar V.R., Kolomiytseva I.K. Catecholaminergic system in the hypothalamus during chronic gamma irradiation in rats. Radiation. biology. Radioecology, 1997, Vol. 37, No. 1, pp. 25–29 (In Russ.)

74. Goncharenko E.N., Antonova S.V., Akhalaya M.Ya., Kudryashov Yu.B. Effect of low doses of ionizing radiation on the level of catecholamines and corticosteroids in the adrenal glands of mice. Radiation. biology. Radioecology, 2000, Vol. 40, No. 2, pp. 160–161 (In Russ.)

75. Potapova V.V., Fedyanina L.N., Maslov V.P. Biologically active additives from marine hydrobionts of the Pacific Ocean – means of mass prevention of the consequences of human exposure. Zdorovye. Medical ecology. The science, 2002, Vol. 8–9, No. 4–5, P. 54 (In Russ.).

76. Goncharova R.I., Smolich I.I. Genetic efficiency of small doses of ionizing radiation in chronic irradiation of small mammals. Radiats. biology. Radioecology, 2002, Vol. 42, No. 6, pp. 654–660 (In Russ.).

77. Jiao G., Yu G., Zhang J., Ewart H.S. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs, 2011, No. 9, pp. 96–223. doi: 10.3390/md9020196

78. Pomin V.H. Marine non-glycosaminoglycan sulfated glycans as potential pharmaceuticals. Pharmaceuticals. 2015, No. 8, pp. 848–864. doi: 10.3390/ph8040848

79. Jesus Raposo M.F., Morais A.M., Morais R.M. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs, 2015, Vol. 13, № 5, pp. 2967–3028. doi: 10.3390/md13052967

80. Cumashi A., Ushakova N.A., Preobrazhenskaya M.E., D’Incecco A., Piccoli A., Totani L., et al. A comparative study of anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 2007, Vol. 17, pp. 541–552. doi: 10.1093/glycob/cwm014

81. Podkorytova A.V., Roshchina A.N., Evseeva N.V., Usov A.I., Golovin G.Yu., Popov A.M. Brown algae of the orders Laminariales and Fucales of the Sakhalin-Kuril region: reserves, production, use. Trudy VNIRO, 2020, Vol. 181, pp. 235–256 (In Russ.) doi: 10.36038/2307-3497-2020-181-235-256

82. Guruleva O.N., Aminina N.M. Study of the content of fucoidan in brown algae of the Far East region. Izvestiya TINRO, 2013, Vol. 172, pp. 265–273 (In Russ.)


Review

For citations:


Polovov S.F., Ivanushko L.A., Smolina T.P. Marine hydrobionts are a perspective source of means for the prevention of radiation-induced disturbances. Marine Medicine. 2023;9(2):18-31. (In Russ.) https://doi.org/10.22328/2413-5747-2023-9-2-18-31. EDN: DLIJGU

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2413-5747 (Print)
ISSN 2587-7828 (Online)