Retrospective analysis of blood fatty acids profile on member of the military
https://doi.org/10.22328/2413-5747-2023-9-2-68-76
EDN: MYQLYD
Abstract
INTRODUCTION: The study of the profile fatty acids (FA) as an energy and functional link of physical performance among enforcement agencies seems to be very relevant.
OBJECTIVE: Assessment of the blood FA profile of the body of military before and after a 4-month special duty associated with health and life risks.
MATERIALS AND METHODS: This prospective, between-subjects, repeated measures, study was conducted during 2014 year. 25 OMON fighters of the Komi Republic were examined before the trip and after a 4-month trip to the North Caucasus, where they constantly experienced combat stress. As a comparison group - employees of the Ministry of Emergency Situations (12 man). The level of FAs pool in total blood plasma lipids was determined by gas chromatography.
RESULTS: During the initial examination of OMON fighters, a higher proportion of hypercholesterolemic myristic acid was revealed in both groups relative to the recommended norms. Its level was significantly higher in the special forces group and averaged 1.5 mol% (p = 0.028). The level of essential n-3 polyunsaturated fatty acids (PUFAs) in the blood plasma (α-linolenic and eicosapentaenoic acids) reduced relative to the baseline values in the participants against the background of a high proportion of linoleic acid was established, as evidenced by the high value of the n6/n3 index - 13.8 / 1 at the recommended standards of WHO 5- 7/1. A re-examination of OMON officers conducted after a trip showed a significant decrease in the level of saturated (p=0.040) and essential n-3 docosahexaenoic (p=0.000) and α-linolenic acids (p=0.003) in blood lipids in 92% and 68% of the subjects respectively. At the same time, the proportion of docosahexaenoic acid in the blood negative correlated with the indicator of personal anxiety (r= -0.32; p=0.028).
DISCUSSION: The professional activity of military and the presence of regular psycho-emotional stress most significantly affect the essential part of fatty acids. The conducted study indicates the need to optimize the diet of participants and additional intake of food supplement, n-3 PUFAs enriched.
Keywords
About the Authors
A. Yu. LyudininaRussian Federation
Alexandra Yu. Lyudinina — Cand. of Sci. (Biol.), Senior Researcher Department of Ecological and Medical Physiology
167982, Syktyvkar, Pervomayskaya str., 50;
Senior Lecturer of the Biochemistry and Physiology Department
Syktyvkar
O. I. Parshukova
Russian Federation
Olga I. Parshukova — Cand. of Sci. (Biol.), Researcher Department of Ecological and Medical Physiology
167982, Syktyvkar, Pervomayskaya str., 50;
Lecturer of the Biochemistry and Physiology Department
Syktyvkar
E. R. Bojko
Russian Federation
Evgeny R. Bojko — Dr. of Sci. (Med.), Professor, Director Department of Ecological and Medical Physiology
167982, Syktyvkar, Pervomayskaya str., 50;
Head of the Biochemistry and Physiology Department
Syktyvkar
References
1. Solonin Yu.G., Varlamova N.G., Vakhnina N.A., Loginova T.P., Liudinina A.Yu., Markov A.L., Potolitsyna N.N., Bojko E.R. Functional state of OMON fighters before and after trip. Marine Medicine. 2020. Vol. 6. № 1. 64–73. (In Russ.). doi:10.22328/2413-5747-2020-6-1-64-73
2. Bukhari A.S., Lutz L.J., Smith T.J., Hatch-McChesney A., O’Connor K.L., Carrigan C.T., Hawes M.R., McGra, S.M., Taylor K.M., Champagne C.M., et al. A Food-Based Intervention in a Military Dining Facility Improves Blood Fatty Acid Profile. Nutrients. 2022. Vol. 14. № 4. pp. 2-15. doi: 10.3390/nu14040743
3. Hoge C.W., Auchterlonie J.L., Milliken C.S. Mental health problems, use of mental health services, and attrition from military service after returning from deployment to Iraq or Afghanistan. JAMA. 2006. Vol. 295. № 9. P. 1023–1032.
4. Hibbeln J.R., Gow R.V. The Potential for Military Diets to Reduce Depression, Suicide, and Impulsive Aggression: A Review of Current Evidence for Omega-3 and Omega-6 Fatty Acids. Military Medicine. 2014. Vol. 179 (Issue suppl_11). P. 117–128. doi: 10.7205/MILMED-D-14-00153
5. Marriott B.P., Hibbeln J.R., Killeen T.K., Magruder K.M., Holes-Lewis K., Tolliver B.K., Turner T.H. Design and methods for the Better Resiliency Among Veterans and non-Veterans with Omega-3’s (BRAVO) study: A double blind, placebocontrolled trial of omega-3 fatty acid supplementation among adult individuals at risk of suicide. Contemp. Clin. Trials. 2016. Vol. 47. P. 325–333.
6. Mickleborough T.D. Omega-3 Polyunsaturated Fatty Acids in Physical Performance Optimization // International Journal of Sport Nutrition and Exercise Metabolism. 2013. No. 23. Р. 83–96. doi: 10.1123/ijsnem.23.1.83
7. Lyudinina A., Bushmanova E., Varlamova N., Bojko E. Dietary and plasma blood α-linolenic acid as modulator of fat oxidation and predictor of aerobic performance. Journal of the International Society of Sports Nutrition. 2020. Т. 17. Vol. 1. № 57. P. 1–7. doi: 10.1186/s12970-020-00385-2
8. Vannice G., Rasmussen H. Position of the Academy of Nutrition and Dietetics: Dietary Fatty Acids for Healthy Adults. J. Acad. Nutr. Diet. 2014. Vol. 114. P. 136–153.
9. Simopoulos A.P. The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease. Asia Pacific Journal of Clinical Nutrition. 2008. Vol. 17. P.131–134.
10. Lewis M.D., Bailes J. Neuroprotection for the warrior: Dietary supplementation with omega-3 fatty acids. Mil. Med. 2011. Vol. 176, P. 1120–1127.
11. Bojko E.R. Physiological and biochemical mechanisms for ensuring sports activities in winter cyclic sports: monograph, Institute of Physiology of the Komi Federal Research Center of the Russian Scientific Center of the Ural Branch of the Academy of Sciences. Syktyvkar. 2019. P. 256 (In Russ.)
12. Hodson L., Skeaff C.M., Fielding B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Progress in Lipid Research. 2008. Vol. 47. P. 348–380. doi: 10.1016/j.plipres.2008.03.003
13. Shramko V.S., Polonskaya Y.V., Kashtanova E.V., Stakhneva E.M. and Ragino Yu.I. The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolecules. 2020. Vol. 10. P. 1127. doi: 10.3390/biom10081127
14. Fattore E., Bosetti C., Brighenti F., Agostoni C., Fattore G. Palm oil and blood lipid–related markers of cardiovascular disease: a systematic review and meta-analysis of dietary intervention trials. Am. J. Clin. Nutr. 2014. Vol. 99. P. 1331–1350. doi: 10.3945/ajcn.113.081190
15. Marangonia F., Colomboa C., Martielloa A., Negrib E., Gallia C. The fatty acid profiles in a drop of blood from a fingertip correlate with physiological, dietary and lifestyle parameters in volunteers. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2007. Vol. 76. P. 87–92. doi: 10.1016/j.plefa.2006.11.004
16. Xi S., Pham H., Ziboh W. A 15-hydroxyeicosatrienoic acid (15-HETrE) suppresses epidermal hyperproliferation via the modulation of nuclear transcription factor (AP-1) and apoptosis. Arch Dermatol Res. 2000. Vol. 292. No. 8. P. 397–403.
17. Mason R.P., Jacob R.F., Corbalan J.J., Malinski T. Combination Eicosapentaenoic Acid and Statin Treatment Reversed Endothelial Dysfunction in HUVECs Exposed to Oxidized LDL. J. Clin. Lipidol. 2014. Vol. 8. P. 342–343. doi: 10.1016/j.jacl.2014.02.074
18. Ishida T., Naoe S., Nakakuki M., Kawano H., Imada K. Eicosapentaenoic Acid Prevents Saturated Fatty Acid-Induced Vascular Endothelial Dysfunction: Involvement of Long-Chain Acyl-CoA Synthetase. J. Atheroscler. Thromb. 2015. Vol. 22. P. 1172–1185. doi: 10.5551/jat.28167
19. Yang Y.C., Lii C.K., Wei Y.L., Li C.C., Lu C.Y., Liu K.L., Chen H.-W. Docosahexaenoic acid inhibition of inflammation is partially via cross-talk between Nrf2/heme oxygenase 1 and IKK/NF-κB pathways. J. Nutr. Biochem. 2013. Vol. 24. P. 204–212. doi: 10.1016/j.jnutbio.2012.05.003
20. Shei R.J., Lindley M.R., & Mickleborough T.D. Omega-3 polyunsaturated fatty acids in the optimization of physical performance. Military Medicine. 2014. Vol. 179 (11 Suppl.). P. 144–156. doi: 10.1123/ijsnem.23.1.83
21. Da Boit M., Hunter A.M., Gray S.R. Fit with good fat? The role of n-3 polyunsaturated fatty acids on exercise performance. Metabolism. 2017. No. 66. Р. 45–54. doi: 10.1016/j.metabol.2016.10.007
22. Johnston D.T., Deuster P., Harris W.S., Macrae H., Dretsch M.N. Red blood cell omega-3 fatty acid levels and neurocognitive performance in deployed U.S. Servicemembers. Nutr. Neurosci. 2013. Vol. 16. pp. 30–38.
Review
For citations:
Lyudinina A.Yu., Parshukova O.I., Bojko E.R. Retrospective analysis of blood fatty acids profile on member of the military. Marine Medicine. 2023;9(2):68-76. (In Russ.) https://doi.org/10.22328/2413-5747-2023-9-2-68-76. EDN: MYQLYD